Physical Simulation about Sandbody Physical Property Control on Forming Lithological Reservoirs
-
摘要: 以东营凹陷岩性油藏为例, 从地质剖析、物理模拟实验和成藏机理等方面探讨了砂体物性变化对岩性油藏含油饱和度增长的控制作用.东营凹陷下第三系被有效源岩包裹砂体的含油性好于处于源岩之外的砂体的含油性, 而且被源岩包裹砂体的含油饱和度具有随砂体物性变好而增加的趋势.在对东营凹陷岩性油藏剖析的基础之上, 应用岩性油藏成藏模拟实验装置, 开展了不同砂体物性对岩性砂体成藏控制的物理模拟实验.模拟实验表明: 在相同压力条件下, 随着砂体粒度的增加, 砂体电阻率变化相同量所需的时间逐渐变短, 即砂体中的含油饱和度达到一定值的速度逐渐变快.这说明砂体物性越好, 越有利于砂体油藏的形成, 砂体物性是影响油气成藏的重要因素.Abstract: Taking the lithological reservoir of Dongying sag as an example, this paper discusses how the change of physical property of sandbody controls the increase of oil saturation from geological analysis, physical simulation experiment and reservoir-formation mechanism. The petroliferous property of the sandbody enveloped by effective source rock Lower Tertiary is superior to that of the sandbody that lies outside the source rock. And the oil saturation of sandbody enveloped by source rock is inclined to increase when the physical property of sandbody becomes better. Based on the analysis on the lithological reservoir of Dongying sag, physical simulation experiments on controlling the forming of lithological sandbody were conducted with hydrocarbon migration and accumulation simulation facilities. The results show that the resistivity of sandbody changes quickly with the increase of grain size, in other words, the speed of the sandbody's reaching a certain oil saturation becomes faster, which indicates that a better physical property of sandbody is conductive to forming lithological reservoir since the physical property is one of the important factors influencing the reservoir forming of sandbody.
-
表 1 粘土测定实验条件
Table 1. Clay determination experimental condition
表 2 岩性油藏成藏机理物理模拟实验项目
Table 2. Physical simulation experiment item of lithological oil reservoir formation mechanism
-
[1] Chen, D. X., Pang, X. Q., Qiu, N. S., et al., 2004. Accumulation and filling mechanism of lenticular sand body reservoir. Earth Science—Journal of China University of Geosciences, 29(4): 483-488(in Chinese with English abstract). [2] Chen, Z. M., Zhang, Y. F., Han, Y. X., 1998. A modeling experi ment and mechanismanalysis of oil accumulation inpod-like sandbody. Petroleum Geology and Experiment, 20(2): 166-170(in Chinese with English abstract). [3] Demhichi, H. J., Anderson, M. J., 1989. Secondary migration of oil experi ments supporting efficient movement of separate, buoyant oil phase along limites conduit. AAPG, 73(8): 1018-1021. [4] Gao, Y. J., Qiu, G. Q., Chen, D. X., et al., 2004. Oil/gasshows in lithologic reservoirs in Niuzhuang sag andtheir main controlling factors. Oil & Gas Geology, 25(3): 284-287(in Chinese with English abstract). [5] Jiang, Z. X., Chen D. X., Miao, S., et al., 2003a. Model test and mechanis minterpretation of the petroleum accumulation of lenticular sandstone in Jiyang depression. Oil & Gas Geology, 24(3): 223-227(in Chinese with English abstract). [6] Jiang, Z. X., Chen, D. X., Qiu, G. Q., et al., 2003b. AHP applied factors for reservoir in the research of main studying formation of controlling sand lens. Petroleum Exploration and Development, 30(3): 44-47(in Chinese with English abstract). [7] Lenormand, R., Zarcone, E., Touboul, E., 1988. Numberical models and experiments on immiscible implacements inporous media. Journal of Fluid Mechanics, 18(9): 165-187. [8] Pang, X. Q., Chen, D. X., Li, P. L., et al., 2004. Predictionand its preli minary application in resource potentials ofsubtle oil/gas reservoirs. Oil & Gas Geology, 25(4): 370-376(in Chinese with English abstract). [9] Selle, O. M., Jensen, J. I., Sylta, O., et al., 1993. Experi mental verification of low-dip, low-rate two-phase(secondary)migration by means of X-ray absorption. Geofluids 93: Contributions to aninternational conference on fluidevolution, migration and interaction in rocks. Torquay, England, 4-7. [10] Zeng, J. H., Jin, Z. J., 2000. Physical simulation for secondary migration and accumulation of oil and gas. Petroleum Industry Press, Beijing, 207-210(in Chinese). [11] Zeng, J. H., Zhang, S. W., Qiu, N. S., et al., 2002. Degree ofoil gas charged in lens-shaped sand body in Jiyang depression and its main controlling factors. Earth Science—Journal of China University of Geosciences, 27(6): 729-732(in Chinese with English abstract). [12] Zhang, L. Y., Jiang, Y. L., Liu, H., et al., 2003. Relationshipbetween source rock and oil accumulation in Dongyingsag. Petroleum Exploration and Development, 30(3): 61-64(in Chinese with English abstract). [13] 陈冬霞, 庞雄奇, 邱楠生, 等, 2004. 砂岩透镜体成藏机理. 地球科学——中国地质大学学报, 29(4): 483-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200404016.htm [14] 陈章明, 张云峰, 韩有信, 1998. 凸镜状砂体聚油模拟实验及其机理分析. 石油实验地质, 20(2): 166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199802013.htm [15] 高永进, 邱桂强, 陈冬霞, 等, 2004. 牛庄洼陷岩性油藏含油气性及主控因素. 石油与天然气地质, 25(3): 284-287. doi: 10.3321/j.issn:0253-9985.2004.03.009 [16] 姜振学, 陈冬霞, 苗胜, 等, 2003a. 济阳坳陷透镜状砂岩成藏模拟实验. 石油与天然气地质, 24(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200303006.htm [17] 姜振学, 陈冬霞, 邱桂强, 等, 2003b. 应用层次分析法研究透镜状砂体成藏主控因素. 石油勘探与开发, 30(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303013.htm [18] 庞雄奇, 陈冬霞, 李丕龙, 等, 2004. 隐蔽油气藏资源潜力预测方法探讨与初步应用. 石油与天然气地质, 25(4): 370-376. doi: 10.3321/j.issn:0253-9985.2004.04.004 [19] 曾溅辉, 金之钧, 2000. 油气二次运移和聚集物理模拟. 北京: 石油工业出版社, 207-210. [20] 曾溅辉, 张善文, 邱楠生, 等, 2002. 济阳坳陷砂岩透镜体油气藏充满度大小及其主控因素. 地球科学——中国地质大学学报, 27(6): 729-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200206012.htm [21] 张林晔, 蒋有录, 刘华, 等, 2003. 东营凹陷油源分析. 石油勘探与开发, 30(3): 61-64. doi: 10.3321/j.issn:1000-0747.2003.03.017