Application of Fuzzy Weights of Evidence Method in Mineral Resource Assessment for Gold in Zhenyuan District, Yunnan Province, China
-
摘要: 采用模糊证据权方法和GeoDASGIS技术开展了镇沅(老王寨)及其邻区的金矿资源潜力评价.分别采用GeoDASGIS软件提供的局部奇异性分析技术、S-A异常分解技术、主成分分析技术、证据权、模糊证据权等技术对相关地球化学元素进行了系统的处理和分析.应用主成分分析方法确定了可能的2种不同成矿类型, 并采用主成分得分确定了组合异常点, 在此基础上分别采用普通证据权和模糊证据权方法编制了成矿后验概率图, 圈定了有利成矿地段.对比普通证据权方法与模糊证据权方法所得结果表明, 模糊证据权方法可减小图层离散化造成的有用信息损失, 提高预测结果精度.Abstract: The fuzzy weights of evidence method implemented in GeoDAS GIS was applied to delineate targets for exploration of gold mineral deposits in Zhenyuan mineral district, Yunnan Province, southwestern China. According to the mineral deposit model compiled by USGS, the mineral deposit type discovered in the area is determined as mesothermal gold deposit. Together with field observations the mineralization associated elements are determined, which include Au, As, Hg, Ag, Sb, Pb, and Cd. The singularity method and S-A methods provided in GeoDAS GIS were applied to delineate the weak anomalies and mixing anomalies related to gold mineral deposits. Principal component analysis method was utilized to analyze these elements to form two components (PC2 and PC3) which may reflect two different types of mineralization: PC2 dominated by Au-As-Hg-Co-Ni-Cu may be related to mesothermal deposits formed close to the contact of the ultramafic intrusions; whereas the PC3 dominated by Au-As-Hg-Ag-Pb may represent epithermal mineral deposits located in the sedimentary basin away from the ultramafic intrusions. The peaks of scores on these types of composite anomaly maps were delineated and used as training points for utilization of weights of evidence method and fuzzy weights of evidence method, respectively. 16 targeting areas were delineated using fuzzy weights of evidence method and were suggested for further exploration. The detailed comparison of fuzzy weights of evidence method with the ordinary weights of evidence method shows that the former can produce better results with less loss of useful information during construction of discrete evidential layers.
-
图 6 采用模糊证据权计算的金的后验概率图及资源潜力远景区预测
a.PC2峰值点为训练集, 最小值: 0.000 78, 最大值: 0.955 71, 均值: 0.072 24, 极差: 0.954 93, 标准差: 0.129 13;b.PC3峰值点为训练集, 最小值: 0.000 000 2, 最大值: 0.495 40, 均值: 0.056 51, 极差: 0.495 40, 标准差: 0.107 04
Fig. 6. Posterior probability map of Au and target areas favorable for Au mineral deposits delineated by fuzzy weights of evidence method
-
[1] Agterberg, F. P., 1989. Computer programs for mineral ex-ploration. Science, 245, 76-81. doi: 10.1126/science.245.4913.76 [2] Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. M., etal., 1993. Weights of evidence modeling and weightedlogistic regression for mineral potential mapping. In: Davis, J. C., Herzfeld, U. C., eds., Computers in geolo-gy. Oxford University Press, New York, 13-32. [3] Agterberg, F. P., Cheng, Q. M., 2002. Conditional independ-ence test for weights of evidence modeling. Natural Re-sources Research, 11(4): 249-255. doi: 10.1023/A:1021193827501 [4] Ali, K., 2005. Application of GeoDAS and other advancedGIS technologies for modeling stream sedi ment geo-chemical distribution patterns to assess gold resourcespotential in Yunnan Province, South China. UnpublishedM. Sc. theses. York University, Toronto, Canada, 166. [5] Ali, K., Cheng, Q. M., 2005. Separation of geochemical a-nomalies from backgrounds using multifractal power-spectrumanalysis: Acase study from Yunnan Province, South China. Proceedings of IAMG05: GIS and SpatialAnalysis. Edited by Qiuming Cheng & Graeme Bon-ham-Carter, 1, 464-469. [6] Ali, K., Cheng, Q. M., Chen, Z. J., 2006a. Multifractalpower-spectrum and singularity analysis for modellingstream sedi ment geochemical distribution patterns toidentify anomalies related to gold mineralizationin Yun-nan Province, South China(accepted by GEEA). [7] Ali, K., Cheng, Q. M., Li, W., et al., 2006b. Multi-elementassociation analysis of stream sedi ment geochemistrydata for predicting gold deposits in Yunnan Province, South China. GEEA, 6: 341-348. doi: 10.1144/1467-7873/06-109 [8] Bonham-Carter, G. F., 1994. Geographic information systemfor geosciences: Modelling with GIS. Pergamon Press, Oxford, 398. [9] Bonham-Carter, G. F., Cheng, Q. M., 2001. Spatially weigh-ted principal component analysis. Presented at IAMG2001 Meeting, Cancún, Mexico, September, 6-12. [10] Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F., 1989. Weights of evidence modeling: Anewapproach tomapping mineral potential. In: Agterberg, F. P., Bon-hamcarter, G. F., eds., Statistical applications in theearth sciences. Geological Survey of Canada, 89-9, 171-183. [11] Cheng, Q. M., 1999. Multifractal interpolation. In: Lippard, S. J., Naess, A, Sinding-Larsen, R., eds., Proceedingsof the firth annual conference of the international asso-ciation for mathematical geology, Trondhei m, Norway, Vol. 1, 245-250. [12] Cheng, Q. M., 2004. Anew model for quantifying anisotropicscale invariance and decomposing of complex patterns. Mathematical Geology, 36(3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a [13] Cheng, Q. M., 2006. GIS-Based fractal anomaly analysis for pre-diction of mineralization and mineral deposits. In: Jeff, H., ed., GIS applicationsin earth sciences. Special Paper of Ge-ological Association of Canada, 285-296. [14] Cheng, Q. M., Agterberg, F. P., 1999. Fuzzy weights of evi-dence method and its applications in mineral potentialmapping. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649 [15] Cheng, Q. M., Bonham-Carter, G. P., 2005. Proceedings of IAMG05: GIS and spatial analysis. Annual Conferenceof International Association for Mathematical GeologyToronto, Canada. [16] Cheng, Q. M., Zhang, S., 2002. Fuzzy weights of evidencemethod i mplemented in GeoDAS GIS for information extraction and integration for prediction of pointevents. In: Proceedings of IEEEinternational conferenceof geosciences and remote sensing, (IGARSS02), To-ronto, Canada, June, 3, 24-28. [17] Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. Theseparation of geochemical anomalies from backgroundby fractal methods. Journal of Exploration Geochemis-try, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2 [18] Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. Spatial analysis method for geochemical anomalyseparation. Journal of Exploration Geochemistry, 56(3): 183-195. doi: 10.1016/S0375-6742(96)00035-0 [19] Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. Fractal patternintegration method for mineral po-tential mapping. Journal of Nonrenewable Resources, 5(2): 117-130. doi: 10.1007/BF02257585 [20] Cheng, Q. M., Xu, Y., Grunsky, E., 2001. Multifractal pow-er spectrum-area method for geochemical anomaly sepa-ration. Natural Resources Research, 9(1): 43-51. https://webpages.ciencias.ulisboa.pt/~mgoncalves/geomfractal.pdf [21] He, W. J., 1993. Characteristic of the lamprophyer and therelation with gold mineralizationin Zhenyuan gold minefield. Yunnan Geology, 12(2): 149-158(in Chinesewith English abstract). [22] Huang, Z. L., Liu, C. Q., Zhu, C. M., et al., 1999. The originof lamprophyres inthe Laowangzhai goldfield, YuannanProvince and their relations with gold minerlization. Ge-ological Publishing House, Beijing, 250(in Chinese). [23] Krishnan, S., Journel, A., 2004. Evaluating information re-dundancy throughthe Tau model. In: Geostatistics Banff2004, Quantitative Geology and Geostatistics, Vol. 14, Leuangthong, O., Deutsch, C., V. eds., XXVⅢ, ISBN: 1-4020-3515-2, Springer, Volume2. [24] Ren, S. L., Qin, G. J., Chi, S. C., et al., 1995. Au origin ofLaowangzhai-Donggualin gold deposit, Zhenyuan Coun-ty, Yunnan Province. Earth Science—Journal of ChinaUniversity of Geosciences, 20(1): 47-52(in Chinese with English abstract). [25] Song, X. Y., Ren, S. L., Qin, G. J., 1994. Characteristics ofmetallogenic tectonics of Laowangzai gold deposit andoccurrence regularity of its orebody. Gold, 15(9): 7-11(in Chinese with English abstract). [26] Thiart, C., Bonham-Carter, G. F., Agterberg, F. P., et al., 2006. An application of the new omnibus test for conditional in-dependence in weights-of-evidence modeling. In: Jeff, H. eds., GIS applications in earth sciences, Special paper ofGeological Association of Canada, 131-142. [27] Xue, C. D., Liu, X., Tan, S. C., et al., 2002. Typomorphic characteristics of main minerals from Laowangzhai golddeposit, western Yunnan. J. Mineral Petrol. , 22(3): 10-16(in Chinese with English abstract). https://www.researchgate.net/publication/295725079_Typomorphic_characteristics_of_main_minerals_from_Laowangzhai_gold_deposit_western_Yunnan [28] Ying, H. L., Liu, B. G., 2000. The trace element and isotopecomposition and their restriction on the origin minerali-zation matter of Laowangzhai gold ore deposit, Yunnan. Gold Science and Technology, 8(2): 15-20(in Chinesewith English abstract). [29] Zhang, S. Y., Wu, Q., Cheng, Q. M., et al., 2006. Weights ofevidence method based on fuzzy training layer and itsapplication in desertification assessment. Earth Sci-ence—Journal of China University of Geosciences, 31(3): 389-393(in Chinese with English abstract). [30] 何文举, 1993. 镇源金矿田煌斑岩特征及其与金矿成矿的关系. 云南地质, 12(2): 148-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199302001.htm [31] 黄智龙, 刘丛强, 朱成明, 等, 1999. 云南老王寨金矿区煌斑岩成因及其与金矿化的关系. 北京: 地质出版社, 250. [32] 任胜利, 秦功炯, 池三川, 等, 1995. 云南镇源老王寨-冬瓜林金矿床的成矿物质来源. 地球科学——中国地质大学学报, 20(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX501.006.htm [33] 宋新宇, 任胜利, 覃功炯, 1994. 老王寨金矿成矿构造特征及矿体赋存规律. 黄金, 15(9): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ409.001.htm [34] 薛传东, 刘星, 谈树成, 等, 2002. 云南老王寨金矿床主要矿物的标型特征. 矿物岩石, 22(3): 10-16. doi: 10.3969/j.issn.1001-6872.2002.03.003 [35] 应汉龙, 刘秉光, 2000. 云南老王寨金矿床微量元素和同位素组成及对成矿物质来源的限定. 黄金科学技术, 8(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ200002002.htm [36] 张生元, 武强, 成秋明, 等, 2006. 基于模糊预测对象的证据权方法及其在土地沙漠化评价中的应用. 地球科学——中国地质大学学报, 31(3): 389-393. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603016.htm