Magnetic Petrology of the High Fe-Ti Eclogite from the Chinese Continental Scientific Drilling(CCSD) Main Hole
-
摘要: 中国大陆科学钻探(CCSD) 主孔中318~380m (A)、420~470m (B) 和530~600m (C) 深度分布三段高铁钛榴辉岩, 它们具有高全铁(FeOT) (平均15.36%、14.09%和20.83%)、高TiO2 (平均3.89%、3.28%和4.10%) 和低SiO2 (平均44.64%、48.64%和41.10%) 含量分布特征.岩石磁性测量结果表明, A段样品为低磁化率(平均3.61×10-7m3·kg-1)、低天然剩余磁化强度(平均0.12×10-3Am2·kg-1) 和低Q值(平均8.03);B段样品为高磁化率(平均12.55×10-7m3·kg-1) 和中等天然剩余磁化强度(平均1.47×10-3Am2·kg-1) 及Q值(平均26.42);C段样品磁化率介于A、B段之间(平均9.73×10-7m3·kg-1), 而天然剩余磁化强度(平均10.05×10-3Am2·kg-1) 和Q值(平均138.571) 最大.岩石磁学和岩相学研究表明, A、B两段样品代表了新鲜或轻度退变质榴辉岩的磁性特征, 但就研究的代表性样品的磁性岩石学特征而言, B段样品显示的退变质程度稍高于A段; C段榴辉岩样品密度最大, 主要为新鲜榴辉岩, 氧逸度明显高于A、B两段样品, 且存在大量出溶过程形成的以薄层结构为标志特征的赤铁矿-钛铁矿固溶体, 可能是样品高天然剩磁的主要原因.
-
关键词:
- 高铁钛榴辉岩 /
- CCSD主孔 /
- 岩石磁学 /
- 赤铁矿-钛铁矿固溶体 /
- 磁化率
Abstract: The high Fe-Ti eclogites appear at the depth intervals from 318-380m (A), 420-470m (B) and 530-600m (C) respectivelys in the Chinese Continental Scientific Drilling (CCSD) Project main hole. They have high FeOT (total Fe) abundances of average 15.36%, 14.09% and 20.83%, high TiO2 concentration of average 3.89%, 3.28% and 4.10% and low SiO2 contents of average 44.64%, 48.64% and 41.10%, respectively. Magnetic study of the samples shows that section A has the lowest susceptibility (average 3.61×10-7m3·kg-1), NRM (average 0.12×10-3Am2·kg-1) and Q-value (average 8.03); section B has the highest susceptibility (average 12.55×10-7m3·kg-1), medium NRM (average 1.47×10-3Am2·kg-1) and Q-value (average 26.42); section C samples has medium susceptibility (average 9.73×10-7m3·kg-1) and the highest NRM (average 10.05×10-3Am2·kg-1) and Q-value (average 138.571). The magnetic property compared with metamorphic petrology of high Fe-Ti eclogites suggests that section A samples represent magnetic properties of the fresh or slightly retrograded eclogites; section B samples show higher metamorphic retrogression than those of section A; section C samples are fresh eclogite, whose density and oxygen fugacity are distinctly higher than those of A and B, containing a lot of hematite-ilmenite lamellar textures formed during the slowly exhumation, which can be the main contributors to the high NRM of the section C eclogite.-
Key words:
- high Fe-Ti eclogite /
- CCSD main hole /
- rock magnetic /
- hematite-ilmenite solid solution /
- susceptibility
-
表 1 岩石的密度和磁性参数
Table 1. Density and magnetic parameters of samples
表 2 代表性样品的矿物组成(%)
Table 2. Mineral assemblage of representative samples
表 3 代表性样品的全岩化学成分主量元素成分分析结果
Table 3. Whole rock major element compositions of representative samples
-
[1] Cong, B. L., Zhang, R. Y., Liou, J. G., et al., 1996. Metamorphic evolution of UHPM rocks. In: Cong, B. L., ed., Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Science Press, China, 128-160. [2] Hammer, J. E., 2006. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth and Planetary Science Letters, 248 (3-4): 618-637. doi: 10.1016/j.epsl.2006.04.022 [3] Hargraves, R. B., 1959. Magnetic anisotropy and remanent magnetism in hemo-ilmenite from ore deposits at Allard Lake, Quebec. Journal of Geophysical Research, 64 (10): 1565-1578. doi: 10.1029/JZ064i010p01565 [4] Harrison, R. J., Becker, U., 2001. Magnetic ordering in solid solutions. European Mineralogical Union Notes in Mineralogy, 3: 349-383. [5] Helgason, ?., Steinthorsson, S., Mϕrup, S., 1989. The ferric/ferrous ratio in basalt melts at different oxygen pressures. Hyperfine Interactions, 45 (1-4): 7-294. doi: 10.1007/BF02405890 [6] Liang, F. H., Su, S. G., You, Z. D., et al., 2005. Retrograde metamorphism of eclogites from the main hole (0-2000m) of the Chinese Continental Scientific Drilling, Donghai, Jiangsu Province. Geology in China, 32 (2): 218-229 (in Chinese with English abstract). [7] Liang, F. H., Zeng, L. S., Xu, Z. Q., et al., 2006. Nature and significance of haematite-ilmenite solid solution in 540-600m eclogite of Chinese Continental Scientific Drilling main borehole: Implications for the exhumation of the CCSD eclogites. Acta Petrologica Sinica, 22 (7): 1905-1914 (in Chinese with English abstract). [8] Liu, Q. S., Liu, Q. S., Liu, Y. S., et al., 2008. Magnetic study of mafic granulite xenoliths from the Hannuoba basalt, North China. Geochem. Geophys. Geosyst., 9, Q06008, doi: 10.1029/2008GC001952. [9] Liu, Q. S., Liu, Q. S., Yang, T., et al., 2009. Magnetic study of the UHP eclogites from the Chinese Continental Scientific Drilling (CCSD) Project. J. Geophys. Res., 114: B02106, doi: 10.1029/2008JB005917. [10] Liu, Q. S., Liu, Q. S., Zhang, Z. M., et al., 2007a. Magnetic properties of ultrahigh-pressure eclogites controlled by retrograde metamorphism: A case study from the ZK703 drillhole in Donghai, eastern China. Physics of the Earth and Planetary Interiors, 160 (3-4): 181-191. doi: 10.1016/j.pepi.2006.10.001 [11] Liu, Y. S., Yang, H. J., Shau, Y. H., et al., 2007b. Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSF decoupling and protolith characteristics. Chemical Geology, 239 (1-2): 64-82. doi: 10.1016/j.chemgeo.2006.12.005 [12] McEnore, S. A., Robinson, P., Panish, P. T., 2000. Chemical and petrographic characterization of ilmenite and magnetite in oxide-rich cumulates of the Sokndal region, Rogaland, Norway. Norges Geologiske Vudersokelse, 436: 49-56. [13] McEnore, S. A., Robinson, P., Panish, P. T., 2001. Aeromagnetic anomalies, magnetic petrology, and rock magnetism of hemo-ilmenite and magnetite-rich cumulates rock from the Sokndal region, south Rogaland, Norway. American Mineralogist, 86: 1447-1468. doi: 10.2138/am-2001-11-1213 [14] Pechersky, D. M., Genshaft, Y. S., 2002. Petromagnetism of the continental crust: A summary of 20th century research. Physics of the Solid Earth, 38 (1): 2-32. http://www.researchgate.net/publication/285946313_Petromagnetism_of_the_continental_crust_A_summary_of_20th_century_research [15] Robinson, P., Harrison, R. J., McEnroe, S. A., et al., 2002. Lamellar magnetism in the haematite-ilmenite series as an explanation for strong remanent magnetization. Nature, 418 (6897): 517-520. doi: 10.1038/nature00942 [16] Xu, H. J., Jin, Z. M., Ou, X. G., 2006. Lithology determination of rocks from CCSD 100-2000m main hole by magnetic susceptibility and density using discriminant function analysis. Earth Science—Journal of China University of Geosciences, 31 (4): 513-519 (in Chinesewith English abstract). [17] Xu, H. J., Jin, Z. M., Ou, X. G., et al., 2004. Effects of retrogression of ultrahigh-pressure eclogites on magnetic susceptibility and anisotropy. Earth Science—Journal of China University of Geosciences, 29 (6): 674-684 (in Chinese with English abstract). http://www.researchgate.net/publication/286206081_Effects_of_retrogression_of_ultrahigh-pressure_eclogites_on_magnetic_susceptibility_and_anisotropy [18] Yang, T., Liu, Q. S., Wu, Y., et al., 2006. Characteristics of magnetic susceptibility in the depth of 100-2000m mainhole of Chinese Continental Scientific Drilling and its geological implication. Acta Petrologica Sinica, 22 (7): 2089-2094 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200607036.htm [19] Zeng, L. S., Liang, F. H., Chen, Z. Y., et al., 2009. Metamorphic garnet pyroxenite from the 540-600m main borehole of the Chinese Continental Scientific Drilling (CCSD) project. Tectonophysics, doi: 10.1016/j.tecto.2009.02.043. [20] Zhang, Z. M., 1996. Disequilibrium reactions and kinetics of ultra-high pressure metamorphic rocks from the Dabie Mountains. Earth Science—Journal of China University of Geosciences, 21 (5): 501-507 (in Chinese withEnglish abstract). [21] Zhang, Z. M., Xiao, Y. L., Hoefs, J., et al., 2006. Ultrahigh pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project: Ⅰ. Petrology and geochemistry of the main hole (0-2050m). Contrib. Mineral. Petrol., 152 (4): 421-441. doi: 10.1007/s00410-006-0120-5 [22] Zhang, Z. M., Xu, Z. Q., Liu, F. L., et al., 2004. Geochemistry of eclogites from the main hole (100-2050m) of the Chinese Continental Scientific Drilling. Acta Petrologica Sinica, 20 (1): 27-42 (in Chinese with English abstract). http://www.researchgate.net/publication/279653024_Geochemistry_of_eclogites_from_the_main_hole_100_2050m_of_the_Chinese_Continental_Scientific_Drilling_Project [23] 梁凤华, 苏尚国, 游振东, 等, 2005. 中国大陆科学钻探主孔0-2000m榴辉岩的退变质过程. 中国地质, 32 (2): 218-229. doi: 10.3969/j.issn.1000-3657.2005.02.005 [24] 梁凤华, 曾令森, 许志琴, 等, 2006. 中国大陆科学钻探主孔540-600m榴辉岩中赤铁矿-钛铁矿固溶体出溶结构的特征及对榴辉岩折返动力学过程的意义. 岩石学报, 22 (7): 1905-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607016.htm [25] 徐海军, 金振民, 欧新功, 2006. 磁化率和密度对中国大陆科学钻探主孔100-2000m岩石类型的判别. 地球科学——中国地质大学学报, 31 (4): 513-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604007.htm [26] 徐海军, 金振民, 欧新功, 等, 2004. 超高压榴辉岩退变质作用对岩石磁化率的影响. 地球科学——中国地质大学学报, 29 (6): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406005.htm [27] 杨涛, 刘庆生, 吴耀, 等, 2006. 中国大陆科学钻探(CCSD) 主孔100-2000m区间磁化率的变异特征及其地质意义. 岩石学报, 22 (7): 2089-2094. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607036.htm [28] 张泽明, 1996. 大别山地区超高压变质岩的不平衡退变质反应及动力学. 地球科学——中国地质大学学报, 21 (5): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.009.htm [29] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100-2050m) 榴辉岩岩石化学研究. 岩石学报, 20 (1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm