• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于Hapke模型的矿物红外发射光谱随粒度与发射角的变异规律

    闫柏琨 陈伟涛 王润生 杨苏明 孙卫东 陈建明

    闫柏琨, 陈伟涛, 王润生, 杨苏明, 孙卫东, 陈建明, 2009. 基于Hapke模型的矿物红外发射光谱随粒度与发射角的变异规律. 地球科学, 34(6): 946-954.
    引用本文: 闫柏琨, 陈伟涛, 王润生, 杨苏明, 孙卫东, 陈建明, 2009. 基于Hapke模型的矿物红外发射光谱随粒度与发射角的变异规律. 地球科学, 34(6): 946-954.
    YAN Bo-kun, CHEN Wei-tao, WANG Run-sheng, YANG Su-ming, SUN Wei-dong, CHEN Jian-ming, 2009. Variation Law of Mineral Emissivity Spectra with Mineral Granularity and Emission Angle Based on Hapke Model. Earth Science, 34(6): 946-954.
    Citation: YAN Bo-kun, CHEN Wei-tao, WANG Run-sheng, YANG Su-ming, SUN Wei-dong, CHEN Jian-ming, 2009. Variation Law of Mineral Emissivity Spectra with Mineral Granularity and Emission Angle Based on Hapke Model. Earth Science, 34(6): 946-954.

    基于Hapke模型的矿物红外发射光谱随粒度与发射角的变异规律

    基金项目: 

    国土资源调查项目 20022014003

    中国地质调查局地质大调查项目 1212010660601

    中国地质调查局地质大调查项目 1212010811050-1

    详细信息
      作者简介:

      闫柏琨(1977 -), 男, 博士, 高级工程师, 从事热红外遥感、高光谱遥感地学应用.E-mail: yanbokun_2006@yahoo.com.cn

    • 中图分类号: P575

    Variation Law of Mineral Emissivity Spectra with Mineral Granularity and Emission Angle Based on Hapke Model

    • 摘要: 矿物红外发射光谱随粒度与发射角的变异是热红外地质遥感中的基础性问题之一, 温度与发射率反演以及矿物信息提取均需要考虑发射光谱的变异.常规实验室矿物发射光谱测量技术难度较大, 限制了对矿物发射光谱变异规律的深入研究.利用Hapke岩矿辐射传输模型对石英、白云母和钙长石3种矿物的发射光谱进行了模拟, 将模拟结果与实测光谱进行了对比, 总结了矿物发射光谱随粒度、发射角的变异规律, 分析了Hapke发射率模型存在的问题.Hapke模型可较好地模拟矿物发射光谱整体谱形与主要光谱特征及其变异规律, 但在某些光谱细节上与实测光谱仍有一定差异, 其原因可能是模型中矿物介质中多次散射辐射为“各向同性”的假设所致; 随粒度增加, 吸收特征会增强, 且位置可能发生漂移; 随发射角增加, 发射率逐渐减小, 透射特征和吸收特征逐渐增强, 但光谱的整体形状和透射特征、吸收特征、克里斯琴森特征的位置与形态均基本保持不变.

       

    • 图  1  石英发射光谱特征(据Melissa and Christensen, 1996修改)

      Fig.  1.  Emissivity features of quartz

      图  2  石英计算光谱与ASU光谱库中实测光谱的对比

      Fig.  2.  Comparison of calculated quartz emissivity and ASU emissivity

      图  3  计算的不同粒度石英的发射光谱

      Fig.  3.  Calculated quartz emissivity of different granularities

      图  4  白云母计算光谱与ASU光谱库中实测光谱对比

      Fig.  4.  Comparison of calculated muscovite emissivity and ASU emissivity

      图  5  计算的不同粒度白云母的发射光谱

      Fig.  5.  Calculated muscovite emissivity of different granularities

      图  6  钙长石计算光谱与ASU光谱库中实测光谱对比

      Fig.  6.  Comparison of calculated anorthite emissivity and ASU spectral emissivity

      图  7  计算的不同粒度钙长石的发射光谱

      Fig.  7.  Calculated anorthite emissivity of different granularities

      表  1  石英的分散度参数

      Table  1.   Dispersion parameters of quartz

    • [1] Aronson, J. G., Strong, P. F., 1975. Optical constants of minerals and rocks. Applied Optics, 14 (12): 2914-2920. doi: 10.1364/AO.14.002914
      [2] Bandfield, J. L., 2002. Global mineral distributions on Mars. Journal of Geophysical Research, 107 (E6): 5042-5063. doi: 10.1029/2001JE001510
      [3] Bandfield, J. L., Hamilton, V. E., Christensen, P. R., 2000. A global view of Martian surface composition from MGS-TES. Science, 287 (5458): 1626-1630. doi: 10.1126/science.287.5458.1626
      [4] Buratti, B. J., Hicks, M. D., Soderblom, L. A., et al., 2004. Deep space 1 photometry of the nucleus of Comet19P/Borrelly. Icarus, 167 (1): 16-29. doi: 10.1016/j.icarus.2003.05.002
      [5] Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2000. Athermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105 (E4): 9735-9739. doi: 10.1029/1998JE000624
      [6] Clark, R. N., Swayzer, G. A., Livo, K. E., et al., 2003. I maging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert system. Journalof Geophysical Research, 108 (E2): 5131.
      [7] Conel, J. E., 1969. Infrared emissivities of silicates: Experimental results and a cloudy at mosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74 (6): 1614-1634. doi: 10.1029/JB074i006p01614
      [8] Copper, B. L., Salisbury, J. W., Killen, R. M., et al., 2002. Midinfared spectral features of rocks and their powders. Journal of Geophysical Research, 107 (E4): 5017. doi: 10.1029/2000JE001462
      [9] Cruikshank, D. P., Dalle-Ore, C. M., Roush, T. L., et al., 2001. Constraints on the composition of Trojan asteroid 624 Hector. Icarus, 153 (2): 348-360. doi: 10.1006/icar.2001.6703
      [10] Dozier, J., Warren, S. G., 1982. Effect of viewing angle on infrared brightness temperature of snow. Water Resources Research, 18 (5): 1424-1434. doi: 10.1029/WR018i005p01424
      [11] Hamilton, V. E., 2000. Thermal infrared emission spectroscopy of the pyroxene mineral series. Journal of Geo-physical Research, 105 (E4): 9701-9716. doi: 10.1029/1999JE001112
      [12] Hansen, J. E., Travis, L. D., 1974. Light scattering in planetary at mospheres. Space Science Review, 16 (4): 527-610. doi: 10.1007/BF00168069
      [13] Hapke, B., 1981. Bidirectional reflectance spectroscopy 1. Theory. Journal of Geophysical Research, 86 (B4): 3039-3054. doi: 10.1029/JB086iB04p03039
      [14] Hapke, B., 1984. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness. Icarus, 59 (1): 41-59. doi: 10.1016/0019-1035(84)90054-X
      [15] Hapke, B., 1986. Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus, 67 (2): 264-280. doi: 10.1016/0019-1035(86)90108-9
      [16] Hapke, B., 1993a. Combined theory of reflectance and emit-tance spectroscopy. In: Remote geochemical analysis: Elemental and mineralogical composition. CambridgeUniversity Press, London, 31-41.
      [17] Hapke, B., 1993b. Theory of reflectance and emittance spectroscopy. Cambridge University Press, London.
      [18] Hapke, B., 1999. Scattering and diffraction of light by particles in planetary regoliths. Journal of Quantitative Spectroscopy of Radiative and Transfer, 61 (5): 565-581. doi: 10.1016/S0022-4073(98)00042-9
      [19] Hapke, B., 2002. Bidirectional reflectance spectroscopy: 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157 (2): 523-534. doi: 10.1006/icar.2002.6853
      [20] Hapke, B., Nelson, R., Smythe, W., 1998. The oppositio neffect of the moon: Coherent backscatter and shadow hiding. Icarus, 133 (1): 89-97. doi: 10.1006/icar.1998.5907
      [21] Hudson, R. S., Ostro, S. J., 1999. Physical model of asteroid 1620 Geographos from radar and optical data. Icarus, 140 (2): 369-378. doi: 10.1006/icar.1999.6142
      [22] Kahle, A. B., Alley, R. E., 1992. Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sensing of Environment, 42 (2): 107-111. doi: 10.1016/0034-4257(92)90093-Y
      [23] Kirkland, L., Herr, K., Keim, E., et al., 2002. First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sensing of Environment, 80 (3): 447-459. doi: 10.1016/S0034-4257(01)00323-6
      [24] Klingelh fer, G., Morris, R. V., Bernhardt, B., et al., 2004. Jarosite and hematite at Meridiani planum from opportunity's MÖssbauer spectrometer. Science, 306 (5702): 1740-1745. doi: 10.1126/science.1104653
      [25] Lane, M. D., Christensen, P. R., 1997. Thermal infrared emission spectroscopy of anhydrous carbonates. Journal of Geophysical Research, 102 (E11): 25581-25592. doi: 10.1029/97JE02046
      [26] Li, X. W., Wang, J. D., Strahler, A. H., 1999. Scale effects of Planck's law over nonisothermal blackbody surface. Science in China (Series E), 42 (6): 652-656. doi: 10.1007/BF02917003
      [27] Liu, L. W., Zheng, H. B., Jian, Z. M., 2005. Visible reflectance record of South China Sea sediments during the past 220 ka and its implications for East Asian monsoon variation. Earth Science—Journal of China University of Geosciences, 30 (5): 543-549 (in Chinesewith English abstract).
      [28] Liu, Z. F., Christophe, C., Alain, T., 2005. Application of Fourier transform infrared (FTIR) spectroscopy in quantitative mineralogy of the South China Sea: Example of core MD01-2393. Earth Science—Journal of China University of Geosciences, 30 (1): 25-29 (inChinese with English abstract).
      [29] Mallama, A., Wand, D., Howard, R. A., 2002. Photometry of mecury from SOHU/LASCO and earth: The phase function from 2 to 170°. Icarus, 155 (2): 253-264. doi: 10.1006/icar.2001.6723
      [30] McGuire, A. F., Hapke, B. W., 1995. An experimental study of light scattering by large, irregular particles. Icarus, 113 (1): 134-155. doi: 10.1006/icar.1995.1012
      [31] Melissa, L. W., Christensen, P. R., 1996. Optical constants of minerals derived from emission spectroscopy: Application to quartz. Journal of Geophysical Research, 107 (B7): 15921-15931.
      [32] Moersch, J. E., Christensen, P. R., 1995. Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra. Journal of GeophysicalResearch, 100 (E4): 7465-7477.
      [33] Pit man, K. M., Wolff, M. J., Clayton, G. C., 2005. Application of modern radiative transfer tools to model laboratory quartz emissivity. Journal of Geophysical Research, 110 (E08003): 1-15.
      [34] Poulet, F., Cuzzi, J. N., Cruikshank, D. P., et al., 2002. Comparison between the Shkuratov and Hapke scattering theories for solid planetary sufaces: Application to the surface composition of two Centaurs. Icarus, 160 (2): 313-324. doi: 10.1006/icar.2002.6970
      [35] Reinart, A., Reinhold, M., 2008. Mapping surface temperature in large lakes with MODIS data. Remote Sensing of Environment, 112 (2): 603-611. doi: 10.1016/j.rse.2007.05.015
      [36] Salisbury, J. W., Wald, A., 1992. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus, 96 (1): 121-128. doi: 10.1016/0019-1035(92)90009-V
      [37] Salisbury, J. W., Walter, L. S., 1989. Thermal infrared (2.5-13.5μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research, 94 (B7): 9192-9202. doi: 10.1029/JB094iB07p09192
      [38] Shepard, M. K., Helfenstein, P., 2007. A test of the Hapke photometric model. Journal of Geophysical Research, 112 (E03001): 1-17.
      [39] Simonelli, D. P., Veverka, J., Thomas, P. C., et al., 1996. Ida lightcurves: Consistency with Galileo shape and photometric models. Icarus, 120 (1): 38-47. doi: 10.1006/icar.1996.0035
      [40] Spitzer, W. G., Kleinman, D. A., 1961. Infrared lattice bands in quartz. Phsical Review, 121 (5): 1324-1335. doi: 10.1103/PhysRev.121.1324
      [41] Vaughan, R. G., Calvin, W. M., Taranik, J. V., 2003. SE-BASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping. Remote Sensing of Environment, 85 (1): 48-63. doi: 10.1016/S0034-4257(02)00186-4
      [42] Vaughan, R. G., Hook, S. J., Calvin, W. M., et al., 2005. Surface mineral mapping at streamboat springs, Neveda, USA with multi-wavelength thermal infrared images. Remote Sensing of Environment, 99 (1-2): 140-158. doi: 10.1016/j.rse.2005.04.030
      [43] Wald, A. E., Salisbury, J. W., 1995. Thermal infrared directional emissivity of powdered quartz. Journal of Geophysical Research, 100 (B12): 24665-24675. doi: 10.1029/95JB02400
      [44] 刘连文, 郑洪波, 翦知湣, 2005. 南海沉积物漫反射光谱反映的220ka以来东亚夏季风变迁. 地球科学———中国地质大学学报, 30 (5): 543-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505004.htm
      [45] 刘志飞, Christophe, C., Alain, T., 2005. 傅里叶变换红外光谱(FTIR) 方法在南海定量矿物学研究中的应用: 以MD01-2393孔为例. 地球科学———中国地质大学学报, 30 (1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3639
    • HTML全文浏览量:  91
    • PDF下载量:  83
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-09
    • 刊出日期:  2009-11-25

    目录

      /

      返回文章
      返回