• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定

    张小文 向华 钟增球 周汉文 张利 杨念 王婧

    张小文, 向华, 钟增球, 周汉文, 张利, 杨念, 王婧, 2009. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定. 地球科学, 34(6): 921-930.
    引用本文: 张小文, 向华, 钟增球, 周汉文, 张利, 杨念, 王婧, 2009. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定. 地球科学, 34(6): 921-930.
    ZHANG Xiao-wen, XIANG Hua, ZHONG Zeng-qiu, ZHOU Han-wen, ZHANG Li, YANG Nian, WANG Jing, 2009. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit. Earth Science, 34(6): 921-930.
    Citation: ZHANG Xiao-wen, XIANG Hua, ZHONG Zeng-qiu, ZHOU Han-wen, ZHANG Li, YANG Nian, WANG Jing, 2009. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit. Earth Science, 34(6): 921-930.

    海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定

    基金项目: 

    国家自然科学基金项目 40873044

    西北大学大陆动力学国家重点实验室开放课题基金 06LCD12

    详细信息
      作者简介:

      张小文(1968-), 男, 博士生, 主要从事矿床地质学研究

      通讯作者:

      钟增球, E-mail: zqzhong@cug.edu.cn

    • 中图分类号: P597;P618.51

    U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit

    • 摘要: 海南抱伦金矿矿区尖峰岭岩体中的锆石可分为岩浆锆石和热液锆石.岩浆锆石无色、透明, 长柱状、无明显包裹体, U、Th含量多小于1000μg/g, 206Pb-238U年龄加权平均值为240±2.1Ma, 代表了尖峰岭岩体的结晶年龄.热液锆石呈褐色、浑浊、半透明的自形短柱状, 相对于岩浆锆石具有异常高的U、Th及微量元素含量, 其U含量最高可达30000μg/g, Th含量最高可达20000μg/g, 微量及稀土元素含量比岩浆锆石普遍高一个数量级, 且具有较高的普通Pb.LA-ICP-MS锆石U-Pb定年结果表明, 这些热液锆石的形成年龄为106~120Ma之间, 206Pb-238U年龄加权平均值为112.8±4.3Ma, 代表了热液作用的年龄, 显示该区在112~120Ma左右经历了一次强烈的热液作用, 可能与该区燕山期大规模的岩浆作用以及抱伦金矿的成矿有关.研究还表明, 对热液锆石直接进行微区原位U-Pb定年, 可用来准确测定热液作用的时间和限定热液成因金矿床的成矿时代.

       

    • 图  1  海南尖峰岭岩体(b) 及抱伦金矿矿区(c) 地质简图(据丁式江等, 2001;谢才富等, 2006修改)

      1.中元古代花岗岩; 2.晚二叠世二长花岗岩; 3.尖峰岭单元; 4.黑岭单元; 5.金鸡岭单元; 6.瘦岭单元; 7.晚燕山石英闪长岩; 8.晚燕山花岗岩; 9.岩脉; 10.断层; 11.抱板群戈枕村组; 12.抱板群峨文岭组; 13.奥陶系南碧沟组; 14.志留系陀烈组; 15.石炭系-二叠系; 16.白垩系; 17.第四系; 18.构造破碎带及其编号; 19.热液石英脉及含金矿石英脉; 20.已有年龄数据采样点及本文采样点和年龄; F1.九所-陵水断裂; F2.王五-文教断裂

      Fig.  1.  Geological sketch map of Jianfengling batholith (b) and Baolun gold deposit (c)

      图  2  岩石薄片显微照片

      a.BL-08中的黑云母、长石等矿物无明显蚀变; b.BL-06中石英与长石交生, 呈花斑结构, 均为正交偏光, 视域直径4 mm

      Fig.  2.  Photomicrographs of the samples

      图  3  锆石阴极发光(CL)图像及测试位置

      a. BL-08锆石CL图像及测试位置; b, c. BL-06锆石CL图像及二次电子图像(右上)

      Fig.  3.  Cathodoluminescence (CL) images of zircons

      图  4  海南尖峰岭岩体锆石REE球粒陨石标准化分配模式

      Fig.  4.  Chondrite normalized REE patterns of zircon grains from Jianfengling granite body, Hainan

      图  5  海南尖峰岭岩体锆石U-Pb谐和图

      Fig.  5.  Concordia diagrams of zircon U-Pb data from Jianfengling granite body

      表  1  海南尖峰岭岩体LA-ICP-MS锆石U-Pb同位素测试结果

      Table  1.   Zircon U-Pb isotopic data obtained by LA-ICP-MS for Jianfengling batholith, Hainan

      表  2  锆石微量元素分析结果(μg/g)

      Table  2.   Trace elements analyses of zircon (μg/g)

    • [1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192 (1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [2] Cathles, L. M., Erendi, A. H. J., Barrie, T., 1997. How long can a hydrothermal system be sustained by a single intrusive event? Economic Geology, 92 (7-8): 766-771. doi: 10.2113/gsecongeo.92.7-8.766
      [3] Chen, B. L., Ding, S. J., Li, Z. J., et al., 2001. Metallogenic age of Baolun gold deposit, Hainan Province. Geochi mica, 30 (6): 525-532 (in Chinese with English abstract).
      [4] Cherniak, D. J., Watson. E. B., 2001. Pb diffusion in zircon. Chemical Geology, 172 (1-2): 5-24. doi: 10.1016/S0009-2541(00)00233-3
      [5] Claoué-Long, J. C., King, R. W., Kerrich, R., 1990. Archaean hydrothermal zircon in the Abitibi greenstone belt: Constraints on the timing of gold mineralisation. Earth and Planetary Science Letters, 98 (1): 109-128. doi: 10.1016/0012-821X(90)90091-B
      [6] Claoué-Long, J. C., King, R. W., Kerrich. R., 1992. Reply to comment by F. Corfu and D. W. Davis on "Archaean hydrothermal zircon in the Abitibi greenstone belt: Constraints on the timing of gold mineralization". Earth and Planetary Science Letters, 109 (3-4): 601-609. doi: 10.1016/0012-821X(92)90118-F
      [7] Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Altas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 469-500. doi: 10.2113/0530469
      [8] Ding, S. J., Huang, D. X., Li, Z. J., et al., 2001. Geological features and minerialzation of the Baolun gold deposit, Hainan. Chinese Geology, 28 (5): 28-34, 18 (in Chinesewith English abstract).
      [9] Dubinska, E., Bylina, P., Kozlowski, A., et al., 2004. U-Pb dating of serpentinization: Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203 (3-4): 183-203. doi: 10.1016/j.chemgeo.2003.10.005
      [10] Geisler, T., Pidgeon, R. T., Kurtz, R., et al., 2003a. Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist, 88 (10): 1496-1513. doi: 10.2138/am-2003-1013
      [11] Geisler, T., Rashwan, A. A., Rahn, M. K. W., et al., 2003b. Low-temperature hydrothermal alteration of natural metamict zircons from the eastern desert, Egypt. Mineralogical Magazine, 67 (3): 485-508. doi: 10.1180/0026461036730112
      [12] Geisler, T., Zhang, M., Salje, E. K. H., 2003c. Recrystallization of almost fully amorphous zircon under hydrothermal conditions: An infrared spectroscopic study. Journal of Nuclear Materials, 320 (3): 280-291. doi: 10.1016/S0022-3115(03)00187-9
      [13] Harrison, T. M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49 (11): 2461-2468. doi: 10.1016/0016-7037(85)90246-7
      [14] Henry, C. D., Elson, H. B., McIntosh, W. C., et al., 1997. Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Economic Geology, 92 (7-8): 807-826. doi: 10.2113/gsecongeo.92.7-8.807
      [15] Hodges, K. V., 1991. Pressure-temperature-time paths. Annual Review of Earth and Planetary Sciences, 19: 207-236. doi: 10.1146/annurev.ea.19.050191.001231
      [16] Hoskin, P. W. O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69 (3): 637-648. doi: 10.1016/j.gca.2004.07.006
      [17] Hoskin, P. W. O., Ireland, T. R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28 (7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
      [18] Hoskin, P. W. O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53 (1): 27-62. doi: 10.2113/0530027
      [19] Hu, F. F., Fan, H. R., Yang, J. H., et al., 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chinese Science Bulletin, 49 (15): 1629-1636. doi: 10.1007/BF03184134
      [20] Kerrich, R., King, R., 1993. Hydrothermal zircon and baddeleyite in Val-d'Or Archean mesothermal gold deposits: Characteristics, compositions, and fluid-inclusion properties, withi mplications for timing of primary gold mineralization. Canadian Journal of Earth Sciences, 30 (12): 2334-2351. doi: 10.1139/e93-203
      [21] Kerrich, R., Kyser, T. K., 1994. 100 Ma timing paradox of Archean gold, Abitibi greenstone-belt (Canada): New evidence from U-Pb and Pb-Pb evaporation ages of hydrothermal zircons. Geology, 22 (12): 1131-1134. doi: 10.1130/0091-7613(1994)022<1131:MTPOAG>2.3.CO;2
      [22] Lee, J. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th diffusionin natural zircon. Nature, 390 (6656): 159-162. doi: 10.1038/36554
      [23] Liu, X. M., Gao, S., Di wu, C. R., et al., 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size. Chinese Science Bulletin, 52 (9): 1257-1264. doi: 10.1007/s11434-007-0160-x
      [24] Liu, Y. L., Ding, S. J., Zhang, X. W., et al., 2002. Ore-forming age of the Baolun gold deposit, Ledong Country, Hainan. Geological Review, 48 (Suppl. ): 84-87 (in Chinese with English abstract).
      [25] Ludwig, K. R., 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, CA, No4.47.
      [26] Martin-Martin, J. D., Tritlla, J., Cardellach, E., et al., 2006. Tectonically driven fluid flow and associated low-grade metamorphism during the Alpine compression in the eastern Iberian Chain (Spain). Journal of Geochemical Exploration, 89 (1-3): 267-270. doi: 10.1016/j.gexplo.2005.11.062
      [27] Pelleter, E., Cheilletz, A., Gasquet, D., et al., 2007. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit Morocco). Chemical Geology, 245 (3-4): 135-161. doi: 10.1016/j.chemgeo.2007.07.026
      [28] Ramezani, J., Dunning, G. R., Wilson, M. R., 2000. Geologic setting, geochemistry of alteration, and U-Pb age of hydrothermal zircon from the Silurian Stog'er tight gold prospect, New foundland appalachians, Canada. Exploration and Mining Geology, 9 (3-4): 171-188. doi: 10.2113/0090171
      [29] Rizvanova, N. G., Levchenkov, O. A., Belous, A. E., et al., 2000. Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: Experimental hydrothermal study. Contributions to Mineralogy and Petrology, 139 (1): 101-114. doi: 10.1007/s004100050576
      [30] Rubatto, D., 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 (1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2
      [31] Shu, B., Wang, P. A., Dong, F. X., et al., 2006. Fluid inclusion and stableisotope studies of the Baolun gold deposit, southwestern Hainan, China. Geological Bulletin of China, 25 (7): 880-893 (in Chinese with English abstract).
      [32] Shu, B., Wang, P. A., Li, Z. J., et al., 2004. Research on mineralizing age of Baolun gold deposit in Hainan Province and its significance. Geoscience, 18 (3): 316-320 (in Chinese with English abstract).
      [33] Sinha, A. K., Wayne, D. M., Hewitt, D. A., 1992. The hydrothermal stability of zircon: Preliminary experimental and isotopic studies. Geochimica et Cosmochimica Acta, 56 (9): 3551-3560. doi: 10.1016/0016-7037(92)90398-3
      [34] Watson, E. B., Cherniak, D. J., Harrison, T. M., et al. 1997. The incorporation of Pbinto zircon. Chemical Geology, 141 (1-2): 19-31. doi: 10.1016/S0009-2541(97)00054-5
      [35] Wu, Y. B., Zheng, Y. F., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49 (15): 1554-1569. doi: 10.1007/BF03184122
      [36] Xie, C. F., Zhu, J. C., Ding, S. J., et al., 2006. Age and petrogenesis of the Jianfengling granite and its relationship to metallogenesis of the Baolun gold deposit, Hainan Island. Acta Petrologica Sinica, 22 (10): 2493-2508 (in Chinese with English abstract).
      [37] Yeats, C. J., McNaughton, N. J., Groves, D. I., 1996. SHRIMP U-Pb geochronological constraints on Archean volcanic-hosted massive sulfide and lode gold mineralization at Mount Gibson, Yilgarn craton, western Australia. Economic Geology, 91 (8): 1354-1371. doi: 10.2113/gsecongeo.91.8.1354
      [38] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28 (3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
      [39] 陈柏林, 丁式江, 李中坚, 等, 2001. 海南抱伦金矿床成矿时代研究. 地球化学, 30 (6): 525-532. doi: 10.3321/j.issn:0379-1726.2001.06.004
      [40] 丁式江, 黄定香, 李中坚, 等, 2001. 海南抱伦金矿地质特征及其成矿作用. 中国地质, 28 (5): 28-34, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200105004.htm
      [41] 刘玉琳, 丁式江, 张小文, 等, 2002. 海南乐东抱伦金矿床成矿时代研究. 地质论评, 48 (增刊): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1015.htm
      [42] 舒斌, 王平安, 董法先, 等, 2006. 海南西南部抱伦金矿床流体包裹体及稳定同位素特征. 地质通报, 25 (7): 880-893. doi: 10.3969/j.issn.1671-2552.2006.07.016
      [43] 舒斌, 王平安, 李中坚, 等, 2004. 海南抱伦金矿的成矿时代研究及其意义. 现代地质, 18 (3): 316-320. doi: 10.3969/j.issn.1000-8527.2004.03.008
      [44] 谢才富, 朱金初, 丁式江, 等, 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系. 岩石学报, 22 (10): 2493-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610009.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  3500
    • HTML全文浏览量:  93
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-07-06
    • 刊出日期:  2009-11-25

    目录

      /

      返回文章
      返回