• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西昆仑及邻区新生代差异隆升的热年代学证据

    曹凯 王国灿 刘超 孟艳宁

    曹凯, 王国灿, 刘超, 孟艳宁, 2009. 西昆仑及邻区新生代差异隆升的热年代学证据. 地球科学, 34(6): 895-906.
    引用本文: 曹凯, 王国灿, 刘超, 孟艳宁, 2009. 西昆仑及邻区新生代差异隆升的热年代学证据. 地球科学, 34(6): 895-906.
    CAO Kai, WANG Guo-can, LIU Chao, MENG Yan-ning, 2009. Thermochronological Evidence of the Cenozoic Differential Uplift Processes of the West Kunlun and Its Adjacent Area. Earth Science, 34(6): 895-906.
    Citation: CAO Kai, WANG Guo-can, LIU Chao, MENG Yan-ning, 2009. Thermochronological Evidence of the Cenozoic Differential Uplift Processes of the West Kunlun and Its Adjacent Area. Earth Science, 34(6): 895-906.

    西昆仑及邻区新生代差异隆升的热年代学证据

    基金项目: 

    中国地质调查局项目 1212010610103

    国家自然科学基金项目 40672137

    中国地质大学研究生学术创新与探索基金 CUGYJS0801

    详细信息
      作者简介:

      曹凯(1984-), 博士研究生, 主要从事构造热年代学和构造地貌研究. E-mail: kiger0148@gmail.com

    • 中图分类号: P542

    Thermochronological Evidence of the Cenozoic Differential Uplift Processes of the West Kunlun and Its Adjacent Area

    • 摘要: 通过总结和分析有关热年代学的资料, 认为西昆仑及邻区的隆升存在明显的时空差异性.第一, 隆升历史表现出明显的阶段性: 晚渐新世到早中新世(25~16Ma) 的部分隆升阶段、中新世中后期的快速隆升阶段(14~8Ma) 和晚中新世以来的整体强烈隆升阶段(6Ma以来).第二, 隆升在空间上显示出明显的差异性: 塔什库尔干-公格尔山地区的隆升主要集中在9Ma以来, 红其拉甫-库地地区的隆升主要集中在25~16Ma, 康西瓦-普鲁地区的隆升则主要在9Ma以来(集中在9~2Ma) 和25~12Ma.东西方向上表现为东西两端靠近构造结(喜玛拉雅西构造结和西昆仑-阿尔金构造结合部位) 的地方较新(主要在9Ma以来), 中间较老(主要在9Ma以前); 南北方向上, 西昆北地体在20Ma左右发生快速隆升, 西昆南地体在9~5Ma发生快速隆升, 而甜水海地体在5~2Ma发生快速隆升, 由北向南总体上呈现出由老到新的空间差异性.

       

    • 西昆仑及邻区是青藏高原晚新生代强烈变形的地区之一, 其新生代的构造演化涉及青藏高原形成、扩展机制和环境效应等重大问题.因此, 一直以来都是国际地质学界研究的热点地区.近几十年来, 国内外许多学者通过热年代学方法(裂变径迹和40Ar/39Ar测年) 对西昆仑及邻区的冷却剥露过程进行了定量研究(Arnaud, 1992; Arnaud et al., 1993; 王军, 1998; 王军等, 1999; Cowgill, 2001; 王彦斌等, 2001; 万景林和王二七, 2002; 王永等, 2002; Wang et al., 2003; Robinson et al., 2004, 2007; 黎敦朋等, 2007), 不同的学者通过对研究区不同部位的研究来探讨整个西昆仑及邻区乃至整个青藏高原的冷却剥露历史, 缺乏从研究区整体的时空差异性角度来系统全面地分析和限定其冷却剥露历史.本文广泛收集了前人报道过的热年代学年龄, 结合项目在柯克亚地区所做的碎屑锆石裂变径迹年龄, 通过系统分析和对比来探讨研究区新生代以来的冷却剥露过程及其驱动机制, 并进一步探讨青藏高原的隆升过程.

      研究区涉及西昆仑山、喀喇昆仑山北坡和帕米尔东部地区, 位于青藏高原的西北缘, 塔里木盆地西南缘, 南接藏北地块, 东端以阿尔金断裂带与东昆仑分开, 西端延伸至境外.由北向南发育一系列大型断裂带, 依次为铁克里克断裂(TKF)、主帕米尔逆冲断层(MPT)、库地断裂(KDF)、盖孜西-库地南断裂(GKF)、康西瓦断裂(KXF)、阿尔金断裂(ATF) 和喀喇昆仑断裂(KKF), 这些断裂把研究区自北向南分为西昆北地体、西昆南地体和甜水海地体3个部分(图 1) (潘裕生, 1990; 丁道桂等, 1996; 潘桂棠等, 2004; Wang, 2004; 刘训等, 2006).西昆北地体主体主要由前震旦系深变质岩构成, 上部发育晚石炭世-早二叠世沉积盖层, 南部出露大面积的花岗岩侵入体(刘训等, 2006), 南界出露奥依塔格-库地蛇绿岩带(潘裕生, 1994; 邓万明, 1995; 丁道桂等, 1996; Yang et al., 1996; 杨树锋等, 1999); 西昆南地体主体由变质的前古生界岩层和大面积的花岗侵入岩体所组成(汪玉珍和方锡廉, 1987; 潘裕生, 1990; 刘训等, 2006); 甜水海地体基底主要由古元古界和长城系中深变质杂岩组成, 上覆早奥陶世、志留纪、二叠纪、三叠纪、中侏罗世和晚白垩世的沉积盖层, 中-酸性岩浆侵入活动比较强烈(丁道桂等, 1996; 刘训等, 2006).

      图  1  西昆仑及邻区构造简图及热年代学样品位置和年龄分布
      KN、KS、KL分表表示西昆北地体、西昆南地体和甜水海地体的样品分布频数图, 频数图的横坐标单位均为Ma, 纵坐标单位均为个, 矩形方框内的年龄单位为Ma.AFT (apatite fission track) 表示磷灰石裂变径迹; ZFT (zircon fission track) 表示锆石裂变径迹; DAFT (detrital apatite fission track) 表示碎屑磷灰石裂变径迹; DAFT (detrital zircon fission track) 表示碎屑锆石裂变径迹; 碎屑磷灰石和锆石的裂变径迹年龄取最年轻组分的峰值年龄, 单位为Ma, Ar/Ar表示40Ar/39Ar测年.TKF.铁克里克断裂; MPT.主帕米尔逆冲断层; GKF.盖孜西-库地南断裂; KMF.库姆塔格断裂; KGF.柯岗断裂; KXF.康西瓦断裂; DHF.大红柳滩断裂; QSF.泉水沟断裂; TSF.甜水海断裂; ATF.阿尔金断裂; KKF.喀喇昆仑断裂.热年代学数据来自Arnaud (1992)Arnaud et al. (1993)王军等(1999)Cowgill (2001)王彦斌等(2001)万景林和王二七(2002)王永等(2002)Wang et al. (2003)Robinson et al.(2004, 2007)、黎敦朋等(2007).该图据潘裕生(1990)新疆维吾尔自治区地质矿产局(1993)Arnaud et al. (1993)丁道桂等(1996)Sobel (1999) 潘桂棠等(2004)Wang (2004)王国灿等(2005)刘训等(2006)崔军文等(2006)Valli et al. (2007)修改
      Fig.  1.  Simplified structural map of West Kunlun and adjacent area, locations of the thermochronological samples and distribution of the thermochronological ages

      综合前人在研究区所报道过的180多个热年代学年龄(其中40Ar/39Ar年龄61个, 锆石裂变径迹2个, 其余均为磷灰石裂变径迹年龄), 结合柯克亚地区所做的碎屑锆石裂变径迹年龄, 系统全面地探讨了西昆仑及邻区的隆升过程.分析结果显示, 西昆仑及邻区在新生代的隆升剥露主要发生在晚渐新世以来, 呈现出3个明显的隆升剥露阶段: 25~16 Ma、14~8 Ma和6 Ma以来(图 2).

      图  2  西昆仑及邻区磷灰石裂变径迹年龄直方图
      Fig.  2.  The histogram of apatite fission track ages in the West Kunlun and adjacent area

      研究区在25~16 Ma的热年代学年龄主要分布在西昆仑山前和塔里木盆地边缘(图 1).25 Ma左右, 西昆仑开始南北向缩短(Coutand et al., 2002), 西昆仑山前由海相环境变为陆相环境(Jin et al., 2003; 王永等, 2006); 24.8~7.9 Ma, 甜水海地体去顶3 000 m (黎敦朋等, 2007). Wang et al. (2003)通过对西昆仑普鲁地区裂变径迹的研究表明青藏高原西北缘的快速冷却事件开始于20~18 Ma. Cowgill (2001)在西昆仑山前新生代逆冲地层下盘片麻岩中获得13.7~22.1 Ma的磷灰石裂变径迹年龄.20 Ma左右, 主帕米尔逆冲断裂带(MPT) 和奥姆塔格断裂带(KMT) 开始活动, 西昆仑地区地壳增厚, 西昆仑山前地带发生隆升剥蚀(Arnaud, 1992; Sobel and Trevor, 1997); 25~20 Ma, 青藏高原北部山脉发生快速剥露事件(Sobel and Trevor, 1997); 20~18 Ma, 布伦口地区发生岩浆活动(Arnaud, 1992); 25~23 Ma以前, 喀喇昆仑断裂形成, 青藏高原西部发生大规模右旋走滑(Lacassin et al., 2004; 李海兵等, 2006); 25~17 Ma, 高原面隆升达到2 000 m左右, 亚洲季风替代先前的行星风系(施雅风等, 1998, 1999); 22 Ma, 亚洲内陆开始干旱化(Guo et al., 2002).上述事件的发生时间和研究区的热年代学记录的隆升剥露时期具有很好的一致性.该阶段为西昆仑的部分隆升阶段, 可能与南部印度板块向欧亚板块挤压并产生强烈俯冲, 加之北部塔里木块体的阻挡, 岩石圈发生拆沉作用并造成西昆仑南北向缩短有关(Harrison et al., 1992, 1998; Yin et al., 1994; Chemenda et al., 2000; 许志琴等, 2006).

      研究区在14~8 Ma的热年代学年龄主要分布在西昆仑西部和东部地区.14~8 Ma, 甜水海地体发生去顶作用(黎敦朋等, 2007); 12~8 Ma, 西昆仑普鲁地区发生快速冷却事件(Wang et al., 2003); 9~8 Ma, 西昆仑北部山前发生抬升作用(万景林和王二七, 2002); 8~7 Ma, 公格尔山张性断裂带发生东西向延伸并引发垂向剥蚀(Robinson et al., 2004, 2007), 导致公格尔山至慕士塔格峰北西向山链的强烈隆升剥露(图 1中的KS8、KS9、KS10和KS11为40Ar/39Ar样品位置), 该事件也被山前现代河流中的碎屑锆石裂变径迹年龄所记录(另文发表). 王彦斌等(2001)通过对西昆仑山新藏公路沿线出露的花岗岩体的裂变径迹研究认为西昆仑山在中新世发生过一次抬升作用.10 Ma, 阿尔金山发生快速隆升(Jolivet et al., 1999); 中新世到第四纪, 西昆仑山前前陆盆地的沉降中心向北迁移至叶城-喀什一带, 快速的沉降作用堆积了5 000~6 000 m的粗碎屑沉积物(丁道桂和罗月明, 2005); 16~14 Ma, 阿尔金断裂的左行走滑加强(Wang, 1997; Yue and Liou, 1999); 17~11 Ma, 喀喇昆仑断裂发生转换和逆冲作用(Matte et al., 1996; Murphy et al., 2000), 12 Ma左右发生活动, 噶尔盆地形成, 阿依拉日居山快速隆升(李海兵等, 2006); 8 Ma, 阿尔金断裂发生快速左行走滑(陈正乐等, 2002).10~8 Ma, 东亚季风形成, 亚洲内部干旱化加剧(Harrison et al., 1992; Molnar et al., 1993; An et al., 2001); 8 Ma, 印度洋季风的加强(Jay et al., 1989; Molnar et al., 1993), 阿拉伯海上涌流出现(Kroon et al., 1991); 7 Ma, 塔克拉玛干大沙漠形成(Sun et al., 2009).上述事件的发生时间和研究区热年代学记录的冷却剥露时期具有明显的一致性, 表明西昆仑及邻区乃至高原西北缘经历快速隆升剥露, 并很可能对青藏高原内部及周缘的气候产生重大影响.该阶段, 印度板块向欧亚大陆持续挤压, 由于塔里木板块的水平阻挡作用, 青藏高原岩石圈上地幔发生“对流剥离” (陈正乐等, 2006), 加速了研究区的隆升剥露.

      6 Ma以来的热年代学年龄在研究区广泛分布.5~4.8 Ma, 青藏高原西北缘的普鲁地区发生过一次快速冷却事件(Wang et al., 2003); 5 Ma左右, 西昆仑山前磨拉石发育, 西昆仑山开始快速隆升(Zheng et al., 2000; 万景林和王二七, 2002; 王永等, 2006); 5 Ma以来, 塔什库尔干地区发生脉动式隆升, 5~2 Ma隆升速率约为0.1 mm/a; 2 Ma以来, 隆升速率增至2 mm/a (王军, 1998); 5 Ma以来, 公格尔山发生冷却事件, 2 Ma时发生突变, 平均冷却速率从20 ℃/Ma变为150 ℃/Ma (Arnaud et al., 1993).2.9~0.9 Ma, 西昆仑南部发生快速隆升(黎敦朋等, 2007); 晚上新世-早更新世以来, 西昆仑山的最低隆升速率为0.21~0.25 mm/a.100 ka以来的隆升速率为1.5 mm/a (潘家伟等, 2007); 2~1.5 Ma, 喀喇昆仑断裂带的最北段发生正断作用, 导致正断层东北侧前新生代地质体快速抬升, 速率为1~4 mm/a (Brunel et al., 1994); 康西瓦断裂全新世以来的滑移速率约为16.1 mm/a (李海兵等, 2008).1.2 Ma左右, 西昆仑及邻区河流开始下切形成阶地, 第四纪中晚期以来西昆仑地区构造抬升幅度与频率加快(王永等, 2006). 陈杰等(2001)通过塔里木西南缘普遍发育的西域砾岩的研究认为西域砾岩具有穿时性, 开始沉积于4.6~3.5 Ma. 郑洪波等(2002, 2003)刘训等(2002)通过塔里木南缘叶城剖面古地磁测试并结合砂岩和砾石组分的分析认为青藏高原北缘山系在4.6 Ma时开始隆升, 在3.5 Ma加速隆升, 在2.4 Ma以前发生大规模隆升. 张克信等(2007)根据整个青藏高原盆地古近纪-新近纪沉积盆地的演化认为中-上新世西昆仑经历大幅度隆升.1.6~1.0 Ma, 西昆仑山发生火山作用, 形成大范围的火山沉积(Liu and Maimaiti, 1989); 5.3 Ma左右, 塔克拉玛干沙漠干旱化加剧(Sun and Liu, 2006; Sun et al., 2008); 3.6~2.6 Ma, 东亚季风加强, 输入到北太平洋的风成物质增加(Rea et al., 1998; An et al., 2001).上述事件的发生时间和研究区热年代学记录的隆升剥露时期也具有较好的匹配性, 该阶段为西昆仑及邻区的整体强烈隆升期, 进一步对青藏高原的气候产生重大影响.

      综上所述, 研究区的隆升历史表现出明显的阶段性, 可以划分为晚渐新世到早中新世(25~16 Ma) 的部分隆升阶段、中新世中后期的快速隆升阶段(14~8 Ma) 和晚中新世以来的整体强烈隆升阶段(6 Ma以来).

      通过系统对比西昆仑及邻区的热年代学年龄, 揭示了研究区的隆升剥露无论是在东西方向上, 还是在南北方向上均具有明显的差异性(图 3).

      图  3  西昆仑及邻区热年代年龄空间差异性直方图
      东西方向: a.公格尔山-塔什库尔干; b.红其拉甫-库地; c.康西瓦-普鲁; 南北方向: d.西昆北地体; e.西昆南地体; f.甜水海地体
      Fig.  3.  Histogram of the spatial difference of thermochronological ages in the West Kunlun and adjacent area

      研究区从西昆仑与阿尔金结合部位的普鲁地区到靠近喜马拉雅构造结的布伦口地区的热年代学年龄表现出明显的差异性.塔什库尔干-公格尔山地区的隆升主要集中在9 Ma以来(图 3a), 现代河流碎屑锆石裂变径迹也有很好的记录(另文发表), 该地区靠近喜马拉雅构造结, 其年轻的剥露除了与青藏高原的均衡调整引起的快速隆升有关外(李吉均和方小敏, 1998; Zheng et al., 2000), 还很可能与气候有关(Rea et al., 1998; An et al., 2001).红其拉甫-库地地区的隆升主要集中在25~16 Ma (图 3b), 该地区的隆升在一定程度上受到印度板块向欧亚板块的强烈俯冲影响(Harrison et al., 1992; 高锐等, 2001; 崔军文等, 2006).康西瓦-普鲁地区的隆升主要在9 Ma以来(集中在9~2 Ma) 和25~12 Ma (图 3c), 该地区处于西昆仑与阿尔金的结合部位, 是青藏高原北缘隆升最强烈的地区之一(黎敦朋等, 2007), 阿尔金断裂和康西瓦断裂是该结合部位最重要的两条大型断裂带.阿尔金断裂自渐新世以来发生过多期活动(陈正乐等, 2002; 崔军文等, 2002; 李海兵等, 2006), 这些活动对阿尔金山的隆升剥露起到了巨大作用(陈正乐等, 2006; 袁四化等, 2006; 刘永江等, 2007).康西瓦断裂在喜马拉雅运动早期发生SE-NW向挤压, 在喜马拉雅运动晚期发生伸展与快速隆升作用(刘强等, 2003), 晚第四纪以来又发生强烈活动(Peltzer et al., 1989; 付碧宏等, 2006; Zhang et al., 2007; 李海兵等, 2008).从阿尔金断裂和康西瓦断裂的活动时间与该地区隆升剥露时期的匹配关系可以推断, 这两条断裂带的活动性对区域性隆升剥露起到了较强的推动作用(杨万志等, 2005; 李海兵等, 2006).因此, 西昆仑及邻区的隆升剥露表现为东西两端靠近构造结的区域较新(主要在9 Ma以来) 和中间区域较老(主要在9 Ma以前) 的空间差异性.

      研究区的热年代学年龄在西昆北地体、西昆南地体和甜水海地体之间也表现出较明显的差异性.西昆北地体的隆升在8 Ma以前, 主要集中在20 Ma左右(图 3d), 另外, 西昆北地体及盆地周缘的碎屑磷灰石和锆石裂变径迹年龄大部分也呈现出20 Ma左右的最年轻峰值年龄(Sobel and Trevor, 1997).结合沉积(Jin et al., 2003; 王永等, 2006) 和气候(施雅风等, 1998, 1999; Guo et al., 2002) 证据, 西昆北地体在20 Ma左右存在快速隆升事件.西昆南地体隆升主要在9 Ma以来, 9~5 Ma形成明显峰值(图 3e), 由于西昆南地体的热年代学年龄主要分布在康西瓦-普鲁和塔什库尔干-公格尔山两个构造结合部位, 9~5 Ma, 西昆南受大型断裂带活动的影响而快速隆升剥露(刘强等, 2003, 杨万志等, 2005; 李海兵等, 2006).甜水海地体的热年代学年龄主要集中在9~2 Ma, 特别是5~2 Ma形成较明显峰值(图 3f). 王军(1998)对塔什库尔干地区的磷灰石裂变径迹研究表明: 5 Ma以来, 甜水海地体西部发生脉动式隆升, 5~2 Ma隆升速率约为0. 1 mm/a增至2 Ma以来的2 mm/a, 因此, 甜水海地体在5~2 Ma存在快速隆升事件.综上所述, 西昆北地体在20 Ma左右发生快速隆升事件, 西昆南地体在9~5 Ma快速隆升, 而甜水海地体在5~2 Ma快速隆升.因此, 西昆仑及其邻近地区发生快速隆升的时间由北向南总体上呈现出由老到新的空间差异性.

      50 Ma左右, 印度与欧亚大陆的新生代碰撞及其后持续的汇聚作用形成当今世界上最雄伟的青藏高原(Besse et al., 1984; Patriat and Achache, 1984; Rowley, 1996).高原的形成以及横向和垂向上的生长影响了区域和全球气候的变化趋势(Ruddiman et al., 1989; Kutzbach et al., 1993; Liu and Yin, 2002), 同时还影响流域模式及盆地和海洋中沉积物的堆积(李吉均和方小敏, 1998; Rea et al., 1998; Zheng et al., 2000; Clark et al., 2004).作为对青藏高原新生代构造过程反应十分敏感的西昆仑及邻区在新生代呈现出3个快速的隆升剥露时期: 25~16 Ma、14~8 Ma和6 Ma以来.这3个快速隆升阶段在青藏高原也具有一定的普遍性(钟大赉和丁林, 1996; 李吉均和方小敏, 1998; 安芷生等, 2006).

      25~16 Ma, 印度板块在向欧亚大陆持续俯冲挤压, 加之塔里木板块的水平阻挡作用(Xiao et al., 2001), 岩石圈发生拆沉作用(Harrison et al., 1992; Yin et al., 1994; Harrison et al., 1998; Chemenda et al., 2000; 崔军文等, 2006; 许志琴等, 2006), 使得整个高原向东、向北和向上生长, 并伴随着强烈的岩浆侵入、火山喷溢作用(Arnaud, 1992; Turner et al., 1993; Harrison et al., 1998; Ding et al., 2003) 以及大型断裂带的活动(钟大赉等, 1989; Tapponnier et al., 1990; Hodges et al., 1992; Hendrix et al., 1994; Yin et al., 1994; Sobel and Trevor, 1997; 李海兵等, 2006).此时, 西昆仑及邻区经历了新生代的部分隆升阶段(Arnaud, 1992; Sobel and Trevor, 1997; Cowgill, 2001; Wang et al., 2003; 黎敦朋等, 2007), 并且地处中亚腹地的天山山脉也开始了其新生代的隆升剥露(Hendrix et al., 1992).

      14~8 Ma, 随着印度板块向欧亚大陆进一步持续挤压和塔里木板块的水平阻挡作用, 青藏高原岩石圈上地幔发生“对流剥离” (Harrison et al., 1992; Molnar et al., 1993), 青藏高原向北部及东部的范围明显扩大(Turner et al., 1993; Meyer et al., 1998; Tapponnier et al., 2001; Wang et al., 2003; 张培震, 2006), 西昆仑及邻区乃至整个高原的北缘山脉出现快速的隆升剥露(Jolivet et al., 1999; 万景林和王二七, 2002; Wang et al., 2003; Robinson et al., 2004), 并对亚洲的气候产生了巨大影响(Jay et al., 1989; Harrison et al., 1992; Molnar et al., 1993; An et al., 2001).

      6 Ma以来, 青藏高原的均衡调整(李吉均和方小敏, 1998; 王国灿等, 2005) 和气候(Zhang et al., 2001) 共同引发了西昆仑及邻区和整个高原的快速隆升, 导致了高原周边一系列盆地内沉积速率的加快和磨拉石建造的发育(李吉均和方小敏, 1998; Zheng et al., 2000; 陈杰等, 2001; 万景林和王二七, 2002; 王永等, 2006). 李吉均和方小敏(1998)以及李吉均(1999)认为3.6~1.7 Ma青藏高原北缘山脉普遍发生隆升作用, 开始奠定青藏高原周边和中国西部的主要山川地貌、河流水系以及气候格局(Rea et al., 1998; An et al., 2001; Sun and Liu, 2006; 王永等, 2006; Sun et al., 2008, 2009); 2.6 Ma以来, 高原则表现为多次脉动式隆升(安芷生等, 2006).

      (1) 西昆仑及邻区的隆升历史表现出明显的阶段性: 晚渐新世到早中新世(25~16 Ma) 的部分隆升阶段、中新世中后期的快速隆升阶段(14~8 Ma)、晚中新世以来的整体强烈隆升阶段(6 Ma以来).25~16 Ma的隆升可能与印度板块向欧亚大陆持续俯冲挤压、塔里木板块的水平阻挡作用及岩石圈发生拆沉造成的西昆仑南北向缩短有关; 16~8 Ma的隆升可能与印度板块和欧亚板块的进一步持续挤压和塔里木板块的水平阻挡作用, 青藏高原岩石圈上地幔“对流剥离”作用有关; 6 Ma以来的隆升则很可能是构造和气候共同作用的结果.

      (2) 西昆仑及邻区的隆升表现出明显的空间差异性.塔什库尔干-公格尔山地区的隆升则主要集中在9 Ma以来, 红其拉甫-库地地区的隆升主要集中在25~16 Ma, 康西瓦-普鲁地区的隆升主要在9 Ma以来(集中在9~2 Ma) 和25~12 Ma.东西方向上表现为东西两端靠近构造结(喜玛拉雅西构造结和西昆仑-阿尔金构造结合部) 的地方较新(主要集中在9 Ma以来), 中间较老(主要在9 Ma以前); 南北方向上, 西昆北地体在20 Ma左右发生快速隆升事件, 西昆南地体在9~5 Ma快速隆升, 而甜水海地体在5~2 Ma快速隆升, 西昆仑发生快速隆升的时间由北向南总体上呈现出由老到新的空间差异性.

    • 图  1  西昆仑及邻区构造简图及热年代学样品位置和年龄分布

      KN、KS、KL分表表示西昆北地体、西昆南地体和甜水海地体的样品分布频数图, 频数图的横坐标单位均为Ma, 纵坐标单位均为个, 矩形方框内的年龄单位为Ma.AFT (apatite fission track) 表示磷灰石裂变径迹; ZFT (zircon fission track) 表示锆石裂变径迹; DAFT (detrital apatite fission track) 表示碎屑磷灰石裂变径迹; DAFT (detrital zircon fission track) 表示碎屑锆石裂变径迹; 碎屑磷灰石和锆石的裂变径迹年龄取最年轻组分的峰值年龄, 单位为Ma, Ar/Ar表示40Ar/39Ar测年.TKF.铁克里克断裂; MPT.主帕米尔逆冲断层; GKF.盖孜西-库地南断裂; KMF.库姆塔格断裂; KGF.柯岗断裂; KXF.康西瓦断裂; DHF.大红柳滩断裂; QSF.泉水沟断裂; TSF.甜水海断裂; ATF.阿尔金断裂; KKF.喀喇昆仑断裂.热年代学数据来自Arnaud (1992)Arnaud et al. (1993)王军等(1999)Cowgill (2001)王彦斌等(2001)万景林和王二七(2002)王永等(2002)Wang et al. (2003)Robinson et al.(2004, 2007)、黎敦朋等(2007).该图据潘裕生(1990)新疆维吾尔自治区地质矿产局(1993)Arnaud et al. (1993)丁道桂等(1996)Sobel (1999) 潘桂棠等(2004)Wang (2004)王国灿等(2005)刘训等(2006)崔军文等(2006)Valli et al. (2007)修改

      Fig.  1.  Simplified structural map of West Kunlun and adjacent area, locations of the thermochronological samples and distribution of the thermochronological ages

      图  2  西昆仑及邻区磷灰石裂变径迹年龄直方图

      Fig.  2.  The histogram of apatite fission track ages in the West Kunlun and adjacent area

      图  3  西昆仑及邻区热年代年龄空间差异性直方图

      东西方向: a.公格尔山-塔什库尔干; b.红其拉甫-库地; c.康西瓦-普鲁; 南北方向: d.西昆北地体; e.西昆南地体; f.甜水海地体

      Fig.  3.  Histogram of the spatial difference of thermochronological ages in the West Kunlun and adjacent area

    • [1] An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalayan-Tibetan plateau since Late Miocene times. Nature, 411 (6833): 62-66. doi: 10.1038/35075035
      [2] An, Z. S., Zhang, P. Z., Wang, E. Q., et al., 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan plateau since the Miocene. Quaternary Sciences, 26 (5): 678-693 (in Chinese with English abstract). http://www.oalib.com/paper/1571236
      [3] Arnaud, N. O., 1992. Apports de la thermochronologie 40Ar/39Ar sur feldspath potassiqueà la connaissance de la tectonique cénozoïque d'Asie. Etudedes mécanismes d'accommodation de la collision continentale (Ph. D. thesis). Univ. Blaise Pascal, Clermont-Ferrand, 263.
      [4] Arnaud, N. O., Brunel, M., Cantagrel, J. M., et al., 1993. High cooling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology. Tectonics, 12 (6): 1335-1346. doi: 10.1029/93TC00767
      [5] Besse, J., Courtillot, V., Pozzi, J. P., et al., 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311 (5987): 621-626. doi: 10.1038/311621a0
      [6] Brunel, M., Arnaud, N. O., Tapponnier, P., et al., 1994. Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology, 22: 707-710. doi: 10.1130/0091-7613(1994)022<0707:KSNFTE>2.3.CO;2
      [7] Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional geology of Xinjiang Uygur Autonomous Region. Geological PublishingHouse, Beijing, 718-742.
      [8] Chemenda, A. I., Burg, J. P., Mattauer, M., 2000. Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth and Planetary Science Letters, 174 (3-4): 397-409. doi: 10.1016/S0012-821X(99)00277-0
      [9] Chen, J., Lu, Y. C., Ding, G. Y., 2001. Records of Late Cenozoic mountain building in western Tarim basin: Molasses growth strata and growth unconformity. Quaternary Sciences, 21 (6): 528-539 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200106009.htm
      [10] Chen, Z. L., Gong, H. L., Li, L., et al., 2006. Cenozoic uplifting and exhumation process of the Altyn Tagh mountains. Earth Science Frontiers, 13 (4): 91-102 (in Chinese with English abstract). http://www.researchgate.net/publication/292767586_Cenozoic_uplifting_and_exhumation_process_of_the_Altyn_Tagh_Mountains
      [11] Chen, Z. L., Wan, J. L., Wang, X. F., et al., 2002. Rapid strike-slip of the Altyn Tagh fault at 8Ma and its geological implications. Acta Geoscientia Sinica, 23 (4): 295-300 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200204001.htm
      [12] Clark, M. E., Schoenbohm, L. M., Royden, L. H., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23: TC1006. doi: 10.1029/2002TC001402.
      [13] Coutand, I., Strecker, M. R., Arrowsmith, J. R., et al., 2002. Late Cenozoic tectonic development of the intramontane Alai Valley (Pamir-Tien Shan region, Central Asia): An example of intracontinental deformation due to the Indo-Eurasia collision. Tectonics, 21 (6): 1053. doi: 10.1029/2002TC001358
      [14] Cowgill, E. S., 2001. Tectonic evolution of the Altyn Taghwestern Kunlun fault system, northwestern China (Doctoral thesis). University of California at Los Angeles, Los Angeles, CA, United States, 311.
      [15] Cui, J. W., Guo, X. P., Ding, X. Z., et al., 2006. Mesozoic-Cenozoic deformation structures and their dynamics in the basin-range junction belt of the west Kunlun-Tarim basin. Earth Science Frontiers, 13 (4): 103-118 (in Chinese with English abstract).
      [16] Cui, J. W., Zhang, X. W., Li, P. W., 2002. The Altun fault: Its geometry, nature and mode of growth. Acta Geoscientia Sinica, 23 (6): 509-516 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXW200102002&dbcode=CJFD&year=2001&dflag=pdfdown
      [17] Deng, W. M., 1995. Geological features of ophiolite and tectonic significance in the Karakorum-West Kunlun Mts. Acta Petrologica Sinica, 11 (Suppl. ): 98-111 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB5S1.007.htm
      [18] Ding, D. G., Luo, Y. M., 2005. Collision structures in Pamir region and reformation of Tarim basin. Oil & Gas Geology, 26 (1): 57-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200501008.htm
      [19] Ding, D. G., Wang, D. X., Liu, W. X., et al., 1996. The western Kunlun orogenic belt and basin. Geological Publishing House, Beijing (in Chinese).
      [20] Ding, L., Kapp, P., Zhong, D. L., et al., 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44 (10): 1833-1865. doi: 10.1093/petrology/egg061
      [21] Fu, B. H., Zhang, S. L., Xie, X. P., 2006. Late Quaternary tectono-geomorphic features along the Kangxiwar fault, Altyn Tagh fault system, northern Tibet. Quaternary Sciences, 26 (2): 228-235 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200602009.htm
      [22] Gao, R., Li, P. W., Li, Q. S., et al., 2001. Deep process of the collision and deformation on the northern margin of the Tibetan plateau: Revelation from investigation of the deep seismic profiles. Science in China (Series D), 31 (Suppl. ): 66-71 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG2001S1008.htm
      [23] Guo, Z. T., Ruddi man, W. F., Hao, Q. Z., et al., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416 (6877): 159-163. doi: 10.1038/416159a
      [24] Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 225 (5052): 1663-1670.
      [25] Harrison, T. M., Grive, M., Lovera, O. M., et al., 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 103 (B11): 27017-27032. doi: 10.1029/98JB02468
      [26] Hendrix, M. S., Dumitru, T. A., Graham, S. A., 1994. Late Oligocene-Early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision. Geology, 22: 487-490. doi: 10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2
      [27] Hendrix, M. S., Graham, S. A., Carroll, A. R., et al., 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan basins, Northwest China. Geological Society of America Bulletin, 104: 53-79. doi: 10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2
      [28] Hodges, K. V., Parrish, R. R., Housh, T. B., et al., 1992. Simultaneous Miocene extension and shortening in the Himalayan orogen. Science, 258 (5087): 1466-1470. doi: 10.1126/science.258.5087.1466
      [29] Jay, Q., Thure, E. C., John, R. B., 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocenein northern Pakistan. Nature, 342 (6246): 163-166. doi: 10.1038/342163a0
      [30] Jin, X. C., Wang, J., Chen, B. W., et al., 2003. Cenozoic depositional sequences in the piedmont of the West Kunlun and their paleogeographic and tectonic implications. Journal of Asian Earth Sciences, 21 (7): 755-765. doi: 10.1016/S1367-9120(02)00073-1
      [31] Jolivet, M., Roger, F., Arnaud, N. O., et al., 1999. Histoire de l'exhumation de l'Altun Shan: Indications sur l'age de la subduction du bloc du Tarim sous le systeme de l'Altyn Tagh (Nord Tibet). Comptes Rendus de l'Academie des Sciences, Series Ⅱ. Sciences de la Terre et des Planetes, 329 (10): 749-755. http://www.sciencedirect.com/science/article/pii/S1251805000884955
      [32] Kroon, D., Steens, T. N. F., Troelstra, S. R., 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proceedings of the Ocean Drilling Program, Scientific Results, 117: 257-263. doi: 10.2973/odp.proc.sr.117.126.1991
      [33] Kutzbach, J. E., Prell, W. L., Ruddi man, W. F., 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan plateau. Journal of Geology, 101 (2): 177-190. doi: 10.1086/648215
      [34] Lacassin, R., Valli, F., Arnaud, N. O., et al., 2004. Largescale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth and Planetary ScienceLetters, 219 (3-4): 255-269. doi: 10.1016/S0012-821X(04)00006-8
      [35] Li, D. P., Zhao, Y., Hu, J. M., et al., 2007. Fission track thermochronologic constraints on plateau surface and geomorphic relief formation in the northwestern margin of the Tibetan plateau. Acta Petrologica Sinica, 23 (5): 900-910 (in Chinese with English abstract). http://www.oalib.com/paper/1494242
      [36] Li, H. B., Valli, F., Xu, Z. Q., et al., 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Geology in China, 2: 239-255 (in Chinese withEnglish abstract). http://www.researchgate.net/publication/215868790_Deformation_and_tectonic_of_the_Karakorum_Fault_Western_Tibet
      [37] Li, H. B., Van der Woerd, J., Sun, Z. M., et al., 2008. Late Quaternary left-slip rate and large earthquake recurrence time along the Kangxiwar (or Karakax) segment of the Altyn Tagh fault, northern Tibet. Quaternary Sciences, 28 (2): 198-213 (in Chinese with English abstract). http://www.researchgate.net/publication/233945593_Late_Quaternary_left-slip_rate_and_large_earthquake_recurrence_time_along_the_Kangxiwar_Karakax_segment_of_the_Altyn_Tagh_fault_Northern_Tibet
      [38] Li, J. J., 1999. Studies on the geomorphological evolution of the Qinghai-Xizang (Tibetan) plateau and Asian monsoon. Marine Geology & Quaternary Geology, 19 (1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ901.001.htm
      [39] Li, J. J., Fang, X. M., 1998. Uplift of Qinghai-Tibetan plateau and environmental change. Chinese Science Bulletin, 44 (23): 2217-2224.
      [40] Liu, J. Q., Mai maiti, Y. M., 1989. Distribution and ages of Ashikule volcanoes on the West Kunlun Mountains, West China. Bulletin of Glacier Research, 7: 187-190. http://www.researchgate.net/publication/288822825_Distribution_and_ages_of_Ashikule_volcanoes_on_the_west_Kunlun_Mountains_west_China
      [41] Liu, Q., Yang, K. G., Zhang, C. L., et al., 2003. The microstructure feature and its geological significance of Kangxiwa fracture zone, West Kunlun. Journal of Mineralogy and Petrololgy, 23 (3): 26-30 (in Chinese with English abstract).
      [42] Liu, X., Wang, J., Zhang, Z. C., et al., 2002. Relation between the components of Quaternary molasses and uplift of the Qinghai-Tibet plateau: Preliminary understanding of the results of measurements of the Quaternary pebble composition at the Kokyar section, Yecheng, Xinjiang. Geological Bulletin of China, 21 (11): 759-763 (in Chinese with English abstract).
      [43] Liu, X., Xiao, X. C., Wu, S. Z., et al., 2006. Evolution of basin-mountain tectonic framework in southern Xinjiang, China (northern margin of Qinghai-Tibet plateau). Geological Publishing House, Beijing (in Chinese).
      [44] Liu, X. D., Yin, Z. Y., 2002. Sensitivity of East Asian monsoon climate to the Tibetan plateau uplift. Palaeogeography, Palaeoclimatology, Palaeoecology, 183 (3-4): 223-245. doi: 10.1016/S0031-0182(01)00488-6
      [45] Liu, Y. J., Neubauer, F., Ge, X. H., 2007. Geochronology of the Altun fault zone and rising of the Altun Moutains. Chinese Journal of Geology, 42 (1): 134-146, 188 (in Chinese with English abstract). http://doc.paperpass.com/journal/20070007dzkx.html
      [46] Matte, P., Tapponnier, P., Arnaud, N. O., et al., 1996. Tectonics of western Tibet, between the Tari mand the Indus. Earth and Planetary Science Letters, 142 (3-4): 311-330. doi: 10.1016/0012-821X(96)00086-6
      [47] Meyer, B., Tapponnier, T., Bourjot, L., et al., 1998. Crustal thickening in Gansu-Qinghai, lithosphere mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135 (117): 1-47.
      [48] Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics, 31 (4): 357-396. doi: 10.1029/93RG02030
      [49] Murphy, M. A., Yin, A., Kapp, P., et al., 2000. Southward propagation of the Karakoram fault system, Southwest Tibet: Timing and magnitude of slip. Geology, 28 (5): 451-454. doi: 10.1130/0091-7613(2000)28<451:SPOTKF>2.0.CO;2
      [50] Pan, G. T., Ding, J., Yao, D. S., et al., 2004. Geological map of the Qinghai-Xizang (Tibet) plateau and adjacent areas (1∶1500000, instruction attached). Chengdu Cartographical Publishing House, Chengdu.
      [51] Pan, J. W., Li, H. B., Jerome, V. D. W., et al., 2007. Late Cenozoic morphotectonic features of the thrust belt in the front of the West Kunlun Mountains. Geological Bulletin of China, 26 (10): 1368-1379 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912006002239
      [52] Pan, Y. S., 1990. Tectonic features and evolution of the western Kunlun Mountain region. Scientia Geologica Sinica, 3: 224-232 (in Chinese with English abstract).
      [53] Pan, Y. S., 1994. Discovery and evidence of the fifth suture zone of Qinghai-Xizang plateau. Acta Geophysica Sinica, 37 (2): 184-192 (in Chinese with English ab-stract). http://en.cnki.com.cn/article_en/cjfdtotal-dqwx402.005.htm
      [54] Patriat, P., Achache, J., 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311 (5987): 615-621. doi: 10.1038/311615a0
      [55] Peltzer, G., Tapponnier, P., Armijo, R., 1989. Magnitude of Late Quaternary left-lateral displacements along the north edge of Tibet. Science, 246 (4935): 1285-1289. doi: 10.1126/science.246.4935.1285
      [56] Rea, D. K., Snoeck, H., Joseph, L. H., 1998. Late Cenozoic eolian depositionin the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13 (3): 215-224. doi: 10.1029/98PA00123
      [57] Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geological Society of America Bulletin, 116 (7-8): 953-973. doi: 10.1130/B25375.1.
      [58] Robinson, A. C., Yin, A., Manning, C. E., et al., 2007. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. Geological Society of America Bulletin, 119 (7-8): 882-896. doi: 10.1130/B25981.1.
      [59] Rowley, D. B., 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145 (1-4): 1-13. doi: 10.1016/S0012-821X(96)00201-4
      [60] Ruddiman, W. F., Prell, W. L., Raymo, M. E., 1989. Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments. Journal of Geophysical Research, 94: 18379-18391. doi: 10.1029/JD094iD15p18379
      [61] Shi, Y. F., Li, J. J., Li, B. Y., et al., 1999. Uplift of The Qinghai-Xizang (Tibetan) plateau and East Asian environmental change during Late Cenozoic. Acta Geographica Sinica, 54 (1): 10-20 (in Chinese with Eng-lish abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB901.001.htm
      [62] Shi, Y. F., Tang, M. C., Ma, Y. Z., 1998. The relation of the second rising in Qinghai-Xizang plateau and the Asia monsoon. Sciencein China (Series D), 28 (3): 263-271 (in Chinese).
      [63] Sobel, E. R., 1999. Basin analysis of the Jurassic-Lower Cretaceous southwest Tarim basin, Northwest China. Geological Society of America Bulletin, 111 (5): 709-724. doi: 10.1130/0016-7606(1999)111<0709:BAOTJL>2.3.CO;2
      [64] Sobel, E. R., Trevor, A. D., 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research, 102 (B3): 5043-5063. doi: 10.1029/96JB03267
      [65] Sun, J. M., Liu, T. S., 2006. The age of the Taklimakan desert. Science, 312 (5780): 1621. doi: 10.1126/science.1124616
      [66] Sun, J. M., Zhang, L. Y., Deng, C. L., et al., 2008. Evidence for enhanced aridity in the Tarim basin of China since 5.3 Ma. Quaternary Science Review, 27 (9-10): 1012-1023. doi: 10.1016/j.quascirev.2008.01.011.
      [67] Sun, J. M., Zhang, Z. Q., Zhang, L. Y., 2009. New evidence on the age of the Taklimakan desert. Geology, 37 (2): 159-162. doi: 10.1130/G25338A.1.
      [68] Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343 (6257): 431-437. doi: 10.1038/343431a0
      [69] Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294 (5547): 1671-1677. doi: 10.1126/science.105978
      [70] Turner, S., Hawkesworth, C., Liu, J. Q., et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364 (6432): 50-54. doi: 10.1038/364050a0
      [71] Valli, F., Arnaud, N., Leloup, P. H., et al., 2007. Twenty million years of continuous deformation along the Karakorum fault, western Tibet: A thermochronological analysis. Tectonics, 26, TC4004. doi: 10.1029/2005TC001913.
      [72] Wan, J. L., Wang, E. Q., 2002. FT evidence of West Kunlun uplift in Pulu. Nuclear Techniques, 25 (7): 565-567 (in Chinese with English abstract).
      [73] Wang, E., 1997. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet. Earth and Planetary Science Letters, 150 (1-2): 55-64. doi: 10.1016/S0012-821X(97)00085-X
      [74] Wang, E., Wan, J. L., Liu, J., 2003. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun rangein Pulu area: Constraints on timing of uplift of northern margin of the Tibetan plateau. Journal of Geophysical Research, 108 (B8): 2401. doi: 10.1029/2002JB001877.
      [75] Wang, G. C., Yang, W. R., Ma, H. D., et al., 2005. Comparing of the tectonic uplift since Late Cenozoic between the East and West Kunlun Mountains. Earth Science Frontiers, 12 (3): 157-166 (in Chinese with English abstract).
      [76] Wang, J., 1998. Uplift of the Karibasheng and Kuzigan granite in the West Kunlun Mountains—Evidence from apatite fission track analysis. Geological Review, 44 (4): 435-442 (in Chinese with English abstract).
      [77] Wang, J., Jin, X. C., Ren, L. D., et al., 1999. The research of apatite fission-track of Cenozoic sediments from Keliyang section in the northern slope of West Kunlun. Acta Geoscientia Sinica, 24 (suppl. ): 159-164 (in Chinese with English abstract).
      [78] Wang, Y., Li, D. G., Xiao, X. C., et al., 2006. Late Cenozoic tectonic movement in the front of the West Kunlun Mountains and uplift of the northwestern margin of the Qinghai-Tibetan plateau. Geology in China, 133 (1): 41-47 (in Chinese with English abstract).
      [79] Wang, Y., Wang, Y. B., Liu, X., et al., 2002. Apatite fissiontrack ages of Late Cenozoic sediments from Kokyar section in western Kunlun foreland basin and their significance. Xinjiang Geology, 20: 43-46 (in Chinese withEnglish abstract).
      [80] Wang, Y. B., Wang, Y., Liu, X., et al., 2001. Apatite fissiontrack records of Mesozoic and Cenozoic episodic reactivation of the Tianshan and West Kunlun Mountains. Regional Geology of China, 20 (1): 94-99 (in Chinesewith English abstract).
      [81] Wang, Y. Z., Fan, X. L., 1987. Preliminary study on granite distribution of time and space in West Kunlun-Karakorun Mountains of Xinjiang. Xinjiang Geology, 5 (1): 9-24 (in Chinese with English abstract).
      [82] Wang, Z. H., 2004. Tectonic evolution of the western Kunlun orogenic belt, western China. Journal of Asian Earth Sciences, 24 (2): 153-161. doi: 10.1016/j.jseaes.2003.10.007
      [83] Xiao, X. C., Liu, X., Gao, R., et al., 2001. Collision tectonics between the Tari mblock (basin) and the northw estern Tibet plateau: New observations from a multidisciplinary geoscientific investigation in the western Kunlun Mountains. Acta Geologica Sinica, 75 (2): 126-132.
      [84] Xu, Z. Q., Yang, J. S., Qi, X. X., et al., 2006. India-Asia collision: A further discussion of N-S and E-W-trending detachments and the orogenic mechanism of the modern Himalayas. Geological Bulletin of China, 25 (1-2): 1-14 (in Chinese with English abstract).
      [85] Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and theirtectonic implications. Tectonophysics, 258 (1-4): 215-231. doi: 10.1016/0040-1951(95)00199-9
      [86] Yang, S. F., Chen, H. L., Dong, C. W., et al., 1999. The characteristics of Kudi ophiolite suite and its tectonic setting. Acta Geologica Sinica, 34 (3): 281-288 (in Chinese with English abstract).
      [87] Yang, W. Z., Zhang, W. Z., Qu, X., 2005. Geochemical evidence of the relation between the Kuyake fault of eastpart of West Kunlum Mountains and the Kangxiwar and Altyn Tagh faults. Geological Bulletin of China, 24 (4): 316-321 (in Chinese with English abstract).
      [88] Yin, A., Harrison, M., Ryerson, F. J., et al., 1994. Tertiary structural evolution of the Gangdese thrust system, southw estern Tibet. Journal of Geophysical Research, 99 (B9): 18175-18201. doi: 10.1029/94JB00504
      [89] Yuan, S. H., Liu, Y. J., Ge, X. H., et al., 2006. Advance in study of Mesozoic-Cenozoic uplift history of the Altyn Mountains. Global Geology, 25 (2): 164-171 (in Chi-nese with English abstract).
      [90] Yue, Y. J., Liou, J. G., 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27: 227-230. doi: 10.1130/0091-7613(1999)027<0227:TSEMFT>2.3.CO;2
      [91] Zhang, K. X., Wang, G. C., Chen, F. N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth ScienceJournal of China University of Geosciences, 32 (5): 583-597 (in Chinese with English abstract).
      [92] Zhang, P. Z., Molnar, P., Downs, W. R., et al., 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosionrates. Nature, 410 (6831): 891-897. doi: 10.1038/35073504
      [93] Zhang, P. Z., Molnar, P., Xu, X. W., 2007. Late Quaternary and present day rates of slip along the Altyn Tagh fault, northern margin of the Tibetan plateau. Tectonics, 26 (5): TC5010. doi: 1011029/2006TC002014.
      [94] Zhang, P. Z., Zheng, D. W., Yin, G. M., et al., 2006. Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan plateau. Quaternary Sciences, 26 (1): 5-13 (in Chinese with English abstract).
      [95] Zheng, H. B., Butcher, K., Powell, C., 2002. Evolution of Neogene foreland basin in Yecheng, Xinjiang, and uplift of northern Tibetan plateau-Ⅰ: Stratigraphy and petrology. Acta Sedimentologica Sinica, 20 (2): 274-281 (in Chinese with English abstract).
      [96] Zheng, H. B., Butcher, K., Powell, C., 2003. Evolution of Neogene foreland basin in Yecheng, Xinjiang, and upliftof northern Tibetan plateau-Ⅱ: Facies analysis. ActaSedi mentologica Sinica, 21 (1): 46-51 (in Chinese with English abstract).
      [97] Zheng, H. B., Powell, C., An, Z. S., et al., 2000. Pliocene uplift of the northern Tibetan plateau. Geology, 28 (8): 715-718. doi: 10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2
      [98] Zhong, D. L., Ding, L., 1996. Discussion on processes and mechanism of uplifting of Tibetan plateau. Science in China (Series D), 26 (4): 289-295 (in Chinese).
      [99] Zhong, D. L., Tapponnier, P., Wu, H. W., et al., 1989. Large-scale strike-slip fault, the major structure of intracontinental deformation after collision. Chinese Science Bulletin, 7: 526-529 (in Chinese).
      [100] 安芷生, 张培震, 王二七, 等, 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长. 第四纪研究, 26 (5): 678-693. doi: 10.3321/j.issn:1001-7410.2006.05.002
      [101] 陈杰, 卢演俦, 丁国瑜, 2001. 塔里木西缘晚新生代造山过程的记录——磨拉石建造及生长地层和生长不整合. 第四纪研究, 21 (6): 528-539. doi: 10.3321/j.issn:1001-7410.2001.06.009
      [102] 陈正乐, 宫红良, 李丽, 等, 2006. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, 13 (4): 91-102. doi: 10.3321/j.issn:1005-2321.2006.04.008
      [103] 陈正乐, 万景林, 王小凤, 等, 2002. 阿尔金断裂带8Ma左右的快速走滑及其地质意义. 地球学报, 23 (4): 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002
      [104] 崔军文, 郭宪璞, 丁孝忠, 等, 2006. 西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学. 地学前缘, 13 (4): 103-118. doi: 10.3321/j.issn:1005-2321.2006.04.009
      [105] 崔军文, 张晓卫, 李朋武, 2002. 阿尔金断裂: 几何学、性质和生长方式. 地球学报, 23 (6): 509-516. doi: 10.3321/j.issn:1006-3021.2002.06.005
      [106] 邓万明, 1995. 喀喇昆仑-西昆仑及邻区蛇绿岩的地质特征及其大地构造意义. 岩石学报, 11 (增刊): 98-111.
      [107] 丁道桂, 罗月明, 2005. 帕米尔地区碰撞构造与塔里木盆地的改造. 石油与天然气地质, 26 (1): 57-77. doi: 10.3321/j.issn:0253-9985.2005.01.009
      [108] 丁道桂, 王道轩, 刘伟新, 等, 1996. 西昆仑造山带与盆地. 北京: 地质出版社.
      [109] 付碧宏, 张松林, 谢小平, 2006. 阿尔金断裂系西段——康西瓦断裂的晚第四纪构造地貌特征研究. 第四纪研究, 26 (2): 228-235. doi: 10.3321/j.issn:1001-7410.2006.02.010
      [110] 高锐, 李朋武, 李秋生, 等, 2001. 青藏高原北缘碰撞变形的深部过程——深地震探测成果之启示. 中国科学(D辑), 31 (增刊): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1009.htm
      [111] 黎敦朋, 赵越, 胡健民, 等, 2007. 青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束. 岩石学报, 23 (5): 900-910. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705005.htm
      [112] 李海兵, Valli, F., 许志琴, 等, 2006. 喀喇昆仑断裂的变形特征及构造演化. 中国地质, 2: 239-255. doi: 10.3969/j.issn.1000-3657.2006.02.002
      [113] 李海兵, Van der Woerd, J., 孙知明, 等, 2008. 阿尔金断裂带康西瓦段晚第四纪以来的左旋滑移速率及其大地震复发周期的探讨. 第四纪研究, 28 (2): 198-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200802003.htm
      [114] 李吉均, 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19 (1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.001.htm
      [115] 李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43 (15): 1569-1574. doi: 10.3321/j.issn:0023-074X.1998.15.001
      [116] 刘强, 杨坤光, 张传林, 等, 2003. 西昆仑康西瓦断裂显微构造特征及其地质意义. 矿物岩石, 23 (3): 26-30. doi: 10.3969/j.issn.1001-6872.2003.03.007
      [117] 刘训, 王军, 张招崇, 等, 2002. 第四纪磨拉石组分与青藏高原隆升的关系——对新疆叶城柯克亚剖面第四纪砾石成分测量结果的认识. 地质通报, 21 (11): 759-763. doi: 10.3969/j.issn.1671-2552.2002.11.013
      [118] 刘训, 肖序常, 吴绍组, 等, 2006. 中国新疆南部(青藏高原北缘) 盆山构造格局的演化. 北京: 地质出版社.
      [119] 刘永江, Neubauer, F., 葛肖虹, 等, 2007. 阿尔金断裂带年代学和阿尔金山隆升. 地质科学, 42 (1): 134-146, 188. doi: 10.3321/j.issn:0563-5020.2007.01.012
      [120] 潘桂棠, 丁俊, 姚冬生, 等, 2004. 青藏高原及邻区地质图(附说明书, 1∶1500000). 成都: 成都地图出版社.
      [121] 潘家伟, 李海兵, Jerome, V. D. W., 等, 2007. 西昆仑山前冲断带晚新生代构造地貌特征. 地质通报, 26 (10): 1368-1379. doi: 10.3969/j.issn.1671-2552.2007.10.014
      [122] 潘裕生, 1990. 西昆仑山构造特征与演化. 地质科学, 3: 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199003002.htm
      [123] 潘裕生, 1994. 青藏高原第五缝合带的发现与论证. 地球物理学报, 37 (2): 184-192. doi: 10.3321/j.issn:0001-5733.1994.02.006
      [124] 施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化. 地理学报, 54 (1): 10-20. doi: 10.3321/j.issn:0375-5444.1999.01.002
      [125] 施雅风, 汤懋苍, 马玉贞, 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨. 中国科学(D辑), 28 (3): 263-271. doi: 10.3321/j.issn:1006-9267.1998.03.005
      [126] 万景林, 王二七, 2002. 西昆仑北部山前普鲁地区山体抬升的裂变径迹研究. 核技术, 25 (7): 565-567. doi: 10.3321/j.issn:0253-3219.2002.07.019
      [127] 王国灿, 杨巍然, 马华东, 等, 2005. 东、西昆仑山晚新生代以来构造隆升作用对比. 地学前缘, 12 (3): 157-166. doi: 10.3321/j.issn:1005-2321.2005.03.017
      [128] 王军, 1998. 西昆仑卡日巴生岩体和苦子干岩体的隆升——来自磷灰石裂变径迹分析的证据. 地质评论, 44 (4): 435-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804013.htm
      [129] 王军, 金小赤, 任留东, 等, 1999. 西昆仑北坡克里阳剖面新生代沉积的磷灰石裂变径迹研究. 地球学报, 24 (增刊): 159-164. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199910001026.htm
      [130] 王彦斌, 王永, 刘训, 等, 2001. 天山、西昆仑山中、新生代幕式活动的磷灰石裂变径迹记录. 中国区域地质, 20 (1): 94-99. doi: 10.3969/j.issn.1671-2552.2001.01.018
      [131] 王永, 李德贵, 肖序常, 等, 2006. 西昆仑山前晚新生代构造活动与青藏高原西北缘的隆升. 中国地质, 133 (1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601003.htm
      [132] 王永, 王彦斌, 刘训, 等, 2002. 柯克亚剖面新生代晚期沉积物中磷灰石裂变径迹年龄及意义. 新疆地质, 20 (增刊): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI2002S1015.htm
      [133] 汪玉珍, 方锡廉, 1987. 西昆仑山、喀喇昆仑山花岗岩类时空分布规律的初步探讨. 新疆地质, 5 (1): 9-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198701001.htm
      [134] 新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社, 718-742. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200304020.htm
      [135] 许志琴, 杨经绥, 戚学祥, 等, 2006. 印度、亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论. 地质通报, 25 (1-2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1003.htm
      [136] 杨树锋, 陈汉林, 董传万, 等, 1999. 西昆仑山库地蛇绿岩的特征及其构造意义. 地质科学, 34 (3): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199903003.htm
      [137] 杨万志, 张维洲, 屈迅, 2005. 西昆仑山东段库牙克断裂与康西瓦断裂、阿尔金断裂关系的地球化学证据. 地质通报, 24 (4): 316-321. doi: 10.3969/j.issn.1671-2552.2005.04.004
      [138] 袁四化, 刘永江, 葛肖虹, 等, 2006. 阿尔金山中—新生代隆升历史研究进展. 世界地质, 25 (2): 164-171. doi: 10.3969/j.issn.1004-5589.2006.02.010
      [139] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32 (5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm
      [140] 张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26 (1): 5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002
      [141] 郑洪波, Butcher, K., Powell, C., 2002. 新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升——Ⅰ地层学与岩石学证据. 沉积学报, 20 (2): 274-281. doi: 10.3969/j.issn.1000-0550.2002.02.015
      [142] 郑洪波, Butcher, K., Powell, C., 2003. 新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升——Ⅱ沉积相与沉积盆地演化. 沉积学报, 21 (1): 46-51. doi: 10.3969/j.issn.1000-0550.2003.01.008
      [143] 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26 (4): 289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001
      [144] 钟大赉, Tapponnier, P., 吴海威, 等, 1989. 大型走滑断层——碰撞后陆内变形的重要形式. 科学通报, 7: 526-529. doi: 10.3321/j.issn:0023-074X.1989.07.004
    • 加载中
    图(3)
    计量
    • 文章访问数:  3611
    • HTML全文浏览量:  99
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-20
    • 刊出日期:  2009-11-25

    目录

    /

    返回文章
    返回