Radiolarian Chert and Island-Arc Volcanic Rocks in Xiapugou Tibet: Records of Neo-Tethys Intra-Oceanic Subduction System?
-
摘要: 在西藏阿里地区夏浦沟野外调查发现放射虫硅质岩、熔岩组合.放射虫硅质岩SiO2含量在89.47%~92.94%之间, Si/Al在43~67之间, Al/ (Al+Fe+Mn) 比值在0.68~0.74之间, MnO/TiO2平均比值为0.60, Ce/Ce*平均值为0.89, LaN/CeN平均值1.09, 指示它位于洋盆和大陆边缘过渡的环境, 总体更接近大陆边缘环境.伴生的火山熔岩以安山质为主, 具低TiO2 (0.75%~0.98%)、轻稀土弱富集和源自板片流体的易溶元素如Ba、U、Pb相对轻稀土富集, 亏损高场强元素(HFSE) Nb、Ta、Ti等, 指示形成于岛弧环境, 很可能是中生代新特提斯洋洋内俯冲系统的组分.放射虫动物群主要包括Alievium cf.regulare、Alievium cf.fatuum、Archaeospongoprunum cf.patricki、Archaeodictyimitra mitra Dumitrica等早白垩世分子, 其提供了岛弧活动时间上限的约束.Abstract: The stratigraphic units composed of radiolarian chert and lava were found in Xiapugou in western of Yarlung Zangbo Suture Zone during the 1/250000 field geology survey. The radiolarian cherts are characterized by SiO2 ranging from 89.47 to 92.94%, Si/ Al ratio ranging from 43 to 67, Al/ (Al+Fe+Mn) ratio from 0.68 to 0.74, The average MnO/TiO2, Ce/Ce* and LaN/CeN ratio is 0.60, 0.89 and 1.09, which indicates the radiolarian chert was formed in transitional environment between continental margin basin and the oceanic basin, and had much more close relationship with the former one. The lava mainly belongs to andesite and is characterized by (1) low TiO2 varying from 0.75 to 0.98%; (2) gentle enrichment in LREE; (3) fluid-soluble elements, such as Ba, U and Pb, are extremely enriched compared with LREE; (4) depleted in high-field strength elements (HFSE) such as Nb, Ta, Ti). All these characters imply that the stratigraphic units are consistent with a juvenile intra-oceanic arc, which maybe represents the remains of New-Tethys intra-oceanic subduction system. The early Cretaceous fauna of radiolarian fossils from the chert including Alievium cf. regulare, Alievium cf. fatuum, Archaeospongoprunum cf. patricki, Archaeodictyimitra mitra Dumitrica et al. have been identified, yielding a upper time restrain of this juvenile intra-oceanic arc.
-
Key words:
- Cretaceous /
- radiolarian /
- chert /
- lithology /
- island arc /
- Xiapugou /
- Yarlung Zangbo Suture Zone
-
图 1 西藏阿里夏浦沟一带地质草图
Qpal.第四系冲洪积; N2Q1Z.札达群; E1-2L.柳区群; TQ.穷果群; Cy-PS.亚里组-色龙群; PtN.元古界聂拉木岩群; PtNq.元古界念青唐古拉岩群; K2hγδ.古新世巨斑状花岗闪长岩; arc.中酸性火山熔岩及碎屑岩; Σ.变质超基性岩; β.玄武岩; gh.榴闪岩; Ⅰ.羌塘地块; Ⅱ.班公湖-怒江缝合带; Ⅲ.拉萨地块(Ⅲ1.班戈岩浆岩带; Ⅲ2.狮泉河缝合带; Ⅲ3.冈底斯火山岩浆弧; Ⅲ4.冈底斯南缘弧前沉积带); Ⅳ.印度河-雅鲁藏布江缝合带(Ⅳ1.北支蛇绿岩; Ⅳ2.扎达微陆块; Ⅳ3.南支蛇绿岩); Ⅴ.印度陆块; F1.札达-拉孜-邛多江断裂; F2.达机翁-彭错林-朗县断裂; F3.噶尔藏布右型走滑断裂(地质草图资料据实测, 印控区据遥感解译; 构造位置据Pan et al. (2004)、许荣科等(2005)并简化和修正)
Fig. 1. Geological sketch map of Xiapugou area in Ngri, Tibet
图 3 雅鲁藏布江缝合带早白垩世放射虫化石(采自札达县夏浦沟, 图中标尺50 μm)
Fig. 3. Early Cretaceous radiolarian fossils in the Yarlung Zangbo Suture Zone
1、2.Archaeodictyimitra mitra Dumitrica; 3、4、5.Pseudodictyomitra sp.; 6.Archaeocenosphaera sp.; 7.Alievium cf. regulare (Wu and Li); 8、9.Archaeospongoprunum cf. patricki Jud.; 10.Paronaella sp.; 11.Halesium sp.; 12.Praeconosphaera sp.; 13.Rikivatella? sp.; 14.Gen. et sp. indeter.
图 4 硅质岩成因及形成环境判别
a.Al-Fe-Mn图解, A.生物成因硅质岩区; B.热液成因硅质岩区; b.稀土配分图解; c.LaN/CeN-Al2O3/ (Al2O3+Fe2O3) 图解; a原图据Adachi et al. (1986) and Yamamoto (1987), c原图和北美页岩数据据Gromet et al. (1984)
Fig. 4. The distinguish about chert genesis and environment
图 5 SiO2-Zr/TiO2*0.000 1图解
原图据Winchester and Floyd (1977)
Fig. 5. SiO2 Versus Zr/TiO2*0.000 1 classification diagram for volcanic rocks
表 1 硅质岩及安山岩的主量元素(%)、微量元素(10-6) 组成
Table 1. Major element (%), trace elements (10-6) composition of selected siliceous and andesitic samples
-
[1] Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47 (1-2): 125-148. doi: 10.1016/0037-0738(86)90075-8 [2] Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183 (1-2), 231-244. doi: 10.1016/S0012-821X(00)00287-9 [3] Bach, W., Alt, J. C., Niu, Y., et al., 2001. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochimicaet Cosmochimica Acta, 65 (19): 3267-3287. doi: 10.1016/S0016-7037(01)00677-9 [4] Bailey, J. C., 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology, 32 (1-2): 139-154. [5] Dhuime, B., Bosch, D., Bodinier, J. L., et al., 2007. Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): Implications for building the roots of island arcs. Earth and Planetary Science Letters, 261 (1-2): 179-200. doi: 10.1016/j.epsl.2007.06.026 [6] Ding, L., 2003. Paleocene deep-water sediments and the radiolarian faunas: Implications for evolution of Yarlungzangbo foreland basin, southern Xizang. Science in China (Series D), 46 (1): 84-96. doi: 10.1360/03yd9008 [7] Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, southcentral Tibet. Tectonics, 24 (3): 1-18. [8] Du, Y. S., Zhu, J., Gu, S. J., 2006. Sedimentary geochemistry and tectonic significance of or dovician cherts in Sunan, north Qilian Mountains. Earth Science—Journal of China University of Geoscience, 31 (1): 101-109 (in Chinese with English abstract). [9] Dubois, C., Hébert, R., Côté, V. D., et al., 2005. The Yarlung Zangbo suture zone ophiolitic mélange (southern Tibet): New insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25 (6): 937-960. doi: 10.1016/j.jseaes.2004.09.004 [10] Durr, S. B., 1996. Provenance of Xigaze fore-arc basin clastic rocks— (Cretaceous, South Tibet). Geological Society of America Bulletin, 108: 669-684. doi: 10.1130/0016-7606(1996)108<0669:POXFAB>2.3.CO;2 [11] Elthon, D., 1991. Geochemical evidence for formation of the bay of islands ophiolite above a subduction zone. Nature, 354 (6349): 140-143. doi: 10.1038/354140a0 [12] Feng, Q. L., Shen, S. Y., Liu, B. P., et al., 2002. Permian radiolarians, chert and basalt from the Daxinshan Formation in the Lancangjiang belt of southwestern Yunnan, China. Science in China (Series D), 45 (1): 65-71. doi: 10.1360/02ye9008 [13] Flower, M. F. J., Russo, R. M., Tamaki, K., et al., 2001. Mantle contamination and the Izu-Bonin-Mariana (IBM) "high-tide mark": Evidence for mantle extrusion caused by Tethyan closure. Tectonophysics, 333 (1-2): 9-34. doi: 10.1016/S0040-1951(00)00264-X [14] Gromet, L. P., Dymek, R. F., Haskin, L. A., et al., 1984. The"North American shale composite": Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48 (12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9 [15] Guo, T. Y., Liang, D. Y., Zhang, Y. Z., et al., 1991. Geology in Ali area, Tibet. China University of Geosciences Press, Wuhan, 205-212, 263 (in Chinese). [16] Hart, S. R., Staudigel, H., 1989. Isotopic characterization and identification of recycled components. In: Hart, S. R., Gülen L, eds., Crust-mantle recycling in subduction zones. Cluver, Dordrecht, 15-28. [17] Helo, C., Hegner, E., Kröner, A., et al., 2006. Geochemical signature of Paleozoic accretionary complexes of the Central Asian orogenic belt in South Mongolia: Constraints on arc environments and crustal growth. Chemical Geology, 227 (3-4): 236-257. doi: 10.1016/j.chemgeo.2005.10.003 [18] Hofmann, A. W., 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90 (3): 297-314. doi: 10.1016/0012-821X(88)90132-X [19] Kay, R. W., 1984. Elemental abundances relevant to the identification of magma sources. Transactions and Proceedings of the Botanical Society of Edinburgh, 310 (1514): 535-547. [20] McDermid, I. R. C., Aitchison, J. C., Davis, A. M., et al., 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187 (3-4): 267-277. doi: 10.1016/S0009-2541(02)00040-2 [21] Mo, X. X., Pan, G. T., 2006. From the Tethys to the formation of the Qinghai-Tibet plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13 (6): 43-51 (in Chinese with English abstract). [22] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2004. Interior probe significance of Mesozoic-Cenozoic lava in Qingzang plateau: Some new results and ideas. In: Chen, Y. T., ed., The new advances of the continental earthquake and interior physics of earth in China. Seimological Press, Beijing, 449-461 (in Chinese). [23] Murray, R. W., Buchholtzten Brink, M. R., Gerlach, D. C., etal., 1992. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fraction during diagenesis. Geochim. Cosmochim. Acta, 56 (7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I [24] Murray, R. W., Buchholtzten Brink, M. R., Jones, D. L., etal., 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18: 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2 [25] Münker, C., W rner, G., Yogodzinski, G., et al., 2004. Behaviour of high field strength elements in subduction zones: Constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters, 224 (3-4): 275-293. doi: 10.1016/j.epsl.2004.05.030 [26] Pan, G. T., Chen, Z. L., Li, X. Z., et al., 1997. Geotectonic setting, formation and evolution of eastern Tethys. Geological Publishing House, Beijing, 172-184 (in Chinese). [27] Pan, G. T., Din, J., Yao, D. S., et al., 2004. 1∶1500 000 map description of Tibet and adjacent zone. Chendu maps Publication Press, Chendu, 40-70. [28] Pearce, J. A., Cann, J. R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19 (2): 290-300. doi: 10.1016/0012-821X(73)90129-5 [29] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25 (4): 956-983. doi: 10.1093/petrology/25.4.956 [30] Pedersen, R. B., Searle, M. P., Corfield, R. I., 2001. U-Pb zircon ages from the Spontang ophiolite, Ladakh Himalaya. Journal of the Geological Society, 158: 513-520. doi: 10.1144/jgs.158.3.513 [31] Petterson, M. G., Windley, B. F., 1985. Rb-Sr dating of the Kohistan arcbatholith in the trans-Himalaya of North Pakistan and tectonic implications. Earth and Planetary Science Letters, 74 (1): 45-57. doi: 10.1016/0012-821X(85)90165-7 [32] Ren, J. S., Xiao, L. W., 2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet plateau by 1∶250 000 geological mapping. Geological Bulletin of China, 23 (1): 1-11 (in Chinese with English abstract). [33] Saunders, A. D., Norry, M. J., Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs: Trace element constraints. In: Oceanic and continental lithosphere; similarities and differences. Journal of Petrology, (Spec Lithos Iss): 415-445. [34] Searle, M. P., Asif Khan, M., Fraser, J. E., et al., 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, 18 (6): 929-949. doi: 10.1029/1999TC900042 [35] Searle, M. P., Windley, B. F., Coward, M. P., et al., 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98: 678-701. doi: 10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2 [36] Tahirkheli, R. A. K., 1979. Geology of Kohistan, KarakoramHi malaya, northern Pakistan. Geology Bulletin, University of Peshawar, 11 (1): 1-30. [37] Tahirkheli, R. A. K., Mattauer, M., Proust, F., et al., 1979. The India-Eurasia suture zone in northern Pakistan; synthesis and interpretation of recent data at plate scale. In: Farah, A., Dajong, K. A., eds., Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, 125-130. [38] Taylor, S. R., McLennan, S. M., 1985. The continental crust: Its composition and evolution. Blackwell Sci. Publ., Oxford, 50-240. [39] Wang, C. S., Li, Y. L., Liu, Z. F., et al., 2005. YarlungZangbo ophiolites revisited: From geological survey to mineral records. Acta Geologica Sinica, 79 (3): 323-330 (in Chinese with English abstract). [40] Wang, Y. J., Ying, Q., Marsuoka, A., et al., 2002. Triassic radiolarians from the Yarlung Zangbo suture zone in the Jiniuarea, Zetang County, southern Tibet. Acta Micropalaeontologica Sinica, 19 (3): 215-227. [41] Weaver, B. L., 1991. The origin of ocean island basalt endmember compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104 (2-4), 381-397. doi: 10.1016/0012-821X(91)90217-6 [42] Wei, D. L., Xia, B., Zhou, G. Q., et al., 2007. Geochemistry and Sr-Nd isotope characteristics of tonalites in Zêdang, Tibet: New evidence for intra-Tethyan subduction. Science in China (Series D), 50 (6): 836-846. doi: 10.1007/s11430-007-0034-8 [43] Winchester, J. A., Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20 (4): 325-343. [44] Wu, H. R., 2000. New data of the Late Jurassic nassellarian (radiolaria) from the Xialu chert in southern Tibet. Geoscience, 14 (3): 301-306 (in Chinese with English abstract). [45] Xia, B., Chen, G. W., Wang, R., et al., 2008. Seamount volcanism associated with the Xigaze ophiolite, southern Tibet. Journal of Asia Earth Sciences, 32 (5-6): 396-405. doi: 10.1016/j.jseaes.2007.11.008 [46] Xia, B., He, M. Y., 1995. Petrogeochemisitry and genetic significance of the Jianapeng ophiolites, Tibet. Acta Mineralogica Sinica, 15 (2): 236-241 (in Chinese with English abstract). [47] Xia, B., Wang, R., Chen, G. W., 2003. Lithogeochemical characteristics and origin for basaltic lava from Renbu ophiolite from Xizang (Tibet), China. Geological Journal of China Universities, 9 (4): 638-647 (in Chinesewith English abstract). [48] Xia, B., Zheng, R., Hong, Y. R., et al., 1997. The lithogeochemical characteristics and origin of Dajiweng ophiolite in Xizang (Tibet). Geology-Geochemistry, (1): 46-52 (in Chinese with English abstract). [49] Xiao, X. C., Wan, Z. Y., Li, G. C., et al., 1983. On the tectonic evolution of the Yarlung zangbo (Tsangpo) suture zone and its adjacent areas. Acta Geologica Sinica, 2: 205-212 (in Chinese with English abstract). [50] Xu, R. K., Ma, G. T., Zheng, Y. Y., et al., 2006. Geochemical and chronological characteristics of the Ayila complex, Rutog, Tibet, China, and its tectonic significance. Geological Bulletin of China, 25 (12): 1428-1436 (in Chinese with English abstract). [51] Xu, R. K., Zheng, Y. Y., Dang, Y. Y., et al., 2005. Preliminary study on two new ophiolite belts in Qusong of Zhada County, western Tibet. Geological Science and Technology Information, 24 (4): 21-24 (in Chinese with English abstract). [52] Yamamoto, K., 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes. Sedimentary Geology, 52 (1-2): 65-108. doi: 10.1016/0037-0738(87)90017-0 [53] Yang, J. S., Xu, Z. Q., Li, H. B., et al., 1998. Discovery of eclogite on the north margin of the Qaidam basin, western China. Chinese Science Bulletin, 43 (14): 1544-1549 (in Chinese with English abstract). doi: 10.1360/csb1998-43-14-1544 [54] Yang, W. Q., Feng, Q. L., Sheng, S. Y., et al., 2009. Permian radiolarians, chert and basalt from the Nan suture zone, northern thailand. Earth Science—Journal of China University of Geoscience, 34 (5): 743-751 (inChinese with English abstract). doi: 10.3799/dqkx.2009.082 [55] Yin, A., Harrison, T. M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth Planetary Science Letters, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [56] Yutaka, T., Masumi, U. M., Yuhei, T., et al., 2007. Geochemical modelling of the Chilas complex in the Kohistan terrane, northern Pakistan. Journal of Asian Earth Sciences, 29 (2-3): 336-349. doi: 10.1016/j.jseaes.2006.04.007 [57] Zhang, Z. F., Feng, Q. L., Fang, N. Q., et al., 2001. Geochemical characteristics and sedimentary environment of Triassic silicious rocks from Muyinhe formation, Changning-Menglian belt, Southwest Yunnan. Earth Science—Journal of China University of Geosciences, 26 (5): 449-455 (in Chinese with English abstract). [58] Zhang, Z. L., Tian, L. F., Fan, Y. G., et al., 2004. New results and major progress in geological survey of the Saga County, Sangsang District and Gyirong County sheets. Geological Bulletin of China, 23 (5-6): 427-432 (in Chinese with English abstract). [59] Zheng, L. L., Liao, G. Y., Geng, Q. R., et al., 2004. New results and major progress in regional geological survey of the Mêdog County Sheet. Geological Bulletin of China, 23 (5-6): 458-462 (in Chinese with English abstract). [60] Zhou, S., Mo, X. X., Mahoney, J. J., et al., 2001. Timing by Sm-Nd in gabbro-diabase and the Pb-Nd isotope character of the Luobosha ophiolite, Tibet. Chinese Science Bulletin, 46 (16): 1387-1390 (in Chinese with Englishabstract). doi: 10.1360/csb2001-46-16-1387 [61] Zhu, J., Du, Y. S., Liu, Z. X., et al., 2006. Mesozoic radiolarian from the middle sector of the Yarlung zangbo suture zone, Tibet and its tectonic implications. Science in China (Series D), 49 (4): 348-357. doi: 10.1007/s11430-006-0348-y [62] 丁林, 2003. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约. 中国科学(D辑), 33 (1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301005.htm [63] 杜远生, 朱杰, 顾松竹, 2006. 北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义. 地球科学——中国地质大学学报, 31 (1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601014.htm [64] 郭铁鹰, 梁定益, 张宜智, 等, 1991. 西藏阿里地质. 武汉: 中国地质大学出版社, 205-212, 263. [65] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13 (6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [66] 莫宣学, 赵志丹, 邓晋福, 等, 2004. 青藏高原中新生代火成岩的深部探针意义: 若干新成果与新认识. 见: 陈运泰主编. 中国大陆地震学与地球内部物理学研究进展. 北京: 地震出版社, 449-461. [67] 潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 172-184. [68] 任纪舜, 肖黎薇, 2004. 1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23 (1): 1-11. doi: 10.3969/j.issn.1671-2552.2004.01.006 [69] 王成善, 李亚林, 刘志飞, 等, 2005. 雅鲁藏布江蛇绿岩再研究: 从地质调查到矿物记录. 地质学报, 79 (3): 323-330. doi: 10.3321/j.issn:0001-5717.2005.03.005 [70] 韦栋梁, 夏斌, 周国庆, 等, 2007. 西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征: 特提斯洋内俯冲的新证据. 中国科学(D辑), 37 (4): 442-450. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704001.htm [71] 吴浩若, 2000. 西藏南部下鲁硅岩晚侏罗世罩笼虫(放射虫) 新材料. 现代地质, 14 (3): 301-306. doi: 10.3969/j.issn.1000-8527.2000.03.011 [72] 夏斌, 何明友, 1995. 西藏加纳朋蛇绿岩岩石地球化学及成因意义. 矿物学报, 15 (2): 236-241. doi: 10.3321/j.issn:1000-4734.1995.02.019 [73] 夏斌, 王冉, 陈根文, 2003. 西藏仁布蛇绿岩壳层熔岩的岩石地球化学及成因. 高校地质学报, 9 (4): 638-647. doi: 10.3969/j.issn.1006-7493.2003.04.015 [74] 夏斌, 郑榕, 洪裕荣, 等, 1997. 西藏达机翁蛇绿岩的岩石地球化学特征及其构造环境. 地质地球化学, (1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199701008.htm [75] 肖序常, 万子益, 李光岑, 等, 1983. 雅鲁藏布江缝合带及其邻区构造演化. 地质学报, 2: 205-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198302009.htm [76] 许荣科, 马国桃, 郑有业, 等, 2006. 西藏日土南部阿依拉杂岩体的地球化学、年代学特征及其构造意义. 地质通报, 25 (12): 1428-1436. doi: 10.3969/j.issn.1671-2552.2006.12.011 [77] 许荣科, 郑有业, 党引业, 等, 2005. 西藏札达曲松一带两条蛇绿岩带的初步研究. 地质科技情报, 24 (4): 21-24. doi: 10.3969/j.issn.1000-7849.2005.04.004 [78] 杨经绥, 许志琴, 李海兵, 等, 1998. 我国西部柴北缘地区发现榴辉岩. 科学通报, 43 (14): 1544-1549. doi: 10.3321/j.issn:0023-074X.1998.14.023 [79] 杨文强, 冯庆来, 沈上越, 等, 2009. 泰国北部难河构造带二叠纪放射虫硅质岩和玄武岩. 地球科学——中国地质大学学报, 34 (5): 743-751. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905006.htm [80] 张振芳, 冯庆来, 方念乔, 等, 2001. 滇西南昌宁-孟连带三叠纪牡音河组硅质岩地球化学特征及沉积环境. 地球科学——中国地质大学学报, 26 (5): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200105002.htm [81] 张振利, 田立富, 范永贵, 等, 2004. 萨嘎县幅、桑桑区幅、吉隆县幅地质调查新成果及主要进展. 地质通报, 23 (5-6): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1003.htm [82] 郑来林, 廖光宇, 耿全如, 等, 2004. 墨脱县幅地质调查新成果及主要进展. 地质通报, 23 (5-6): 458-462. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1009.htm [83] 周肃, 莫宣学, Mahoney, J. J., 等, 2001. 西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb, Nd同位素特征. 科学通报, 46 (16): 1387-1390. doi: 10.3321/j.issn:0023-074X.2001.16.017 [84] 朱杰, 杜远生, 刘早学, 等, 2005. 西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义. 中国科学(D辑), 35 (12): 1131-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200512004.htm