Ancient DNA Analyses of the Spotted Hyena (Crocuta crocuta) from Lingxian Cave, Qinhuangdao, Hebei Province
-
摘要: 鬣狗科动物曾是一个数量十分可观的群体, 在5百万年前曾达到演化的鼎盛时期, 留下已鉴定化石种100余种.现生的鬣狗科动物仅有4种, 仅分布在亚洲和非洲部分地区.由于该科动物演化至今种类剧减、分布区退缩, 部分化石种与现生种的谱系演化关系尚不明确, 因此成为古生物学家和进化生物学家关注的生物类群之一.采用现代分子生物学方法, 提取扩增河北秦皇岛灵仙洞中鬣狗类化石的线粒体基因组古DNA片段, 通过与基因库中已有鬣狗科动物各属种同源序列的对比分析, 从分子水平确定该化石为斑鬣狗化石; 基于古DNA序列数据构建的系统进化树显示, 该地的斑鬣狗个体与我国东北地区及俄罗斯的化石斑鬣狗具有较近的亲缘关系, 而与西欧洞穴鬣狗及非洲现生斑鬣狗亲缘关系较远, 显示出斑鬣狗演化的分子地理谱系.Abstract: The extant hyena species are the remnants of a formerly diverse group of Hyaenidae, which reached its peak about 5 MYA and contained more than 100 fossil species. Hyenas have been the subject of a number of evolutionary and systematic studies during the last two centuries, due in large part to the dramatical loss of its diversity and geography. The phylogenetic studies incorporating both morphological and molecular analysis have yielded different conclusions regarding the evolutionary relationship between extant and extinct hyenas. In this study, partial ancient DNA sequence of cytochrome b gene in mitochondrial genome was successfully retrieved from Pleistocene hyena bones collected from Hebei Province in North China. The BLAST result shows that the cracked specimen is the teeth of a spotted hyena (Crocuta crocuta), which makes the classification of the specimen clear at the molecular level. Furthermore, both the obtained sequence and the homologous sequences extracted from GenBank were aligned and used as datasets for phylogenetic analyses. The phylogenetic tree shows that the two individuals from China and the one from Russia were joined together, appearing as a sister group of the branch combined by the west European fossils and the African extant hyenas, which suggests a phylogeographic pattern of the Pleistocene cave hyenas.
-
襄荆高速公路及汉十高速公路是构成湖北省高速公路网的两条重要主干线, 也是湖北省“十五”重点交通基础设施建设项目, 它们的建成必将有力地推动湖北省经济建设的发展.鄂北岗地和江汉平原的西北边缘为湖北省膨胀土的两处集中分布区, 是汉十与襄荆高速公路必经之地, 因此膨胀土问题是两条高速公路必须解决的主要工程地质问题.本文在对两条高速公路膨胀土路段详细勘察的基础上, 通过其膨胀特性的对比分析, 进一步了解湖北省膨胀土两处集中分布区的膨胀特性.
1. 工程地质条件概述
1.1 地层岩性及成因类型
襄荆高速公路膨胀土路段主要分布于襄樊至荆门一带, 其位于大洪山台褶束西南汉水流域西岸, 属于扬子准地台.膨胀土区地层出露类型简单, 第四系厚度较大, 主要表现为两种成因类型: 冲洪积与残坡积.冲洪积膨胀土为上更新统, 分布范围较广, 主要为富含铁锰质结核的棕红、棕褐色粘土及亚粘土组成, 局部见含砂砾石亚粘土及亚砂土.残坡积膨胀土为中、上更新统, 主要为黄褐、棕黄色硬塑状粘土及亚粘土组成, 底部可见含泥角砾.
汉十高速公路膨胀土路段主要分布于襄樊至枣阳一带, 其位于大洪山台褶束北部, 属于秦岭褶皱系.膨胀土区第四系覆盖层较厚, 鲜有其他地层出露, 第四系主要也表现为两种成因类型: 冲洪积及残坡积.冲洪积膨胀土为上更新统, 主要由棕红、棕黄、棕褐色粘土及亚粘土组成, 含豆状铁锰质结核, 其粒径一般在0.1~ 0.3 cm.残坡积膨胀土形成于中晚更新世, 主要以黄色、棕黄及褐黄色为主, 局部路段夹有灰白色、灰绿色次生粘土条带或薄膜, 少有豆状铁锰质结核.
1.2 地形地貌及物理地质现象
地形地貌的形成直接缘于区域地质构造的作用, 但膨胀土地貌的形成是由于在膨胀土堆积和发育过程中各种内外地质营力相互作用的结果.内力地质作用主要表现在膨胀土平原和盆地接受了邻近上升山地及其他地区剥蚀后的膨胀土物质的大量搬运和堆积, 形成了深厚的膨胀土地层; 外力地质作用主要是水的作用, 大气降雨、地表径流、河流与河谷流水、地下水等营力, 在膨胀土的特殊工程地质性质的影响下, 改造了其原始地貌, 形成膨胀土侵蚀地形和无数逶迤的丘岗与沟谷相间的地貌.
襄荆高速公路膨胀土区位于汉江河谷平原西岸, 形成北高南低, 东西向以汉江为最低点两端逐步向汉江缓倾的凹形地势.膨胀土区主要表现为垄岗地貌形态, 地面海拔高程一般在70~ 105 m之间变动, 相对高差多为5~ 10 m, 自然边坡角一般为20°左右.岗丘与沟谷的展布范围较小, 对下伏基岩具有明显的继承性, 其走向呈近东西向展布.
汉十高速公路穿越南襄盆地的边缘地带, 从襄樊至枣阳地势逐步升高.膨胀土区主要呈波状起伏的冲洪积垄岗地貌, 剥蚀堆积地形, 具典型的膨胀土地貌形态.岗丘走向以近南北向为主, 相间排列, 形成岗丘与沟谷相间组合的波状起伏, 岗丘与沟谷的展布范围较长, 高程一般在110~ 150 m之间, 相对高差约30 m, 自然边坡角一般为10°~ 20°.丘顶圆浑而平坦, 在沟谷两侧的岸坡可以发现许多大小不等、形态各异的“鸡爪形”细沟与纹沟, 沟形断面为浅V字型.
襄荆与汉十高速公路膨胀土区主要的物理地质现象为低层建筑物的地基变形引起的民用平房的开裂, 以及边坡的溜滑、滑坡等变形.
2. 物质成分及粘粒质量分数的对比
膨胀土的物质成分及粘粒的质量分数是其产生胀缩特性的内在因素.通过X射线衍射物相分析及颗粒分析试验, 可知襄荆及汉十高速公路膨胀土的物质成分主要由石英、长石、蒙脱石、伊利石、高岭石及绿泥石组成, 见图 1, 2.
图 1表明, 与襄荆高速公路膨胀土相比, 汉十高速公路膨胀土中石英及长石的质量分数高, 而粘土矿物蒙脱石及伊利石的质量分数较低.图 2表明, 汉十高速公路膨胀土中小于0.005 mm的粘粒占83.4%, 而襄荆高速公路膨胀土中小于0.005 mm的粘粒仅占50%.由此反映出: 汉十高速公路膨胀土物质来源较襄荆高速公路远, 且经历了较长距离的搬运, 以至于石英及长石的质量分数较高, 并且粘粒所占比例大.
3. 膨胀土膨胀特性对比
3.1 膨胀土胀缩指标统计
襄荆与汉十高速公路膨胀土胀缩指标见表 1.
表 1 襄荆与汉十高速公路膨胀土膨缩指标对比Table Supplementary Table Index comparison of swell soil in Xiangjing and Hanshi highways(1) 自由膨胀率Fs.从表 1可知, 襄荆高速公路粘性土具有弱膨胀潜势的指标占61.7%, 具有中等膨胀潜势的指标占9.0%, 具有强膨胀潜势的指标占1.6%;而汉十高速公路具有弱膨胀潜势的指标占67.8%, 具有中等膨胀潜势的指标占10.36%, 具有强膨胀潜势的指标占0.19%.这说明此两处的土体多数具弱膨胀潜势, 但襄荆高速公路出现的强乃至超强膨胀潜势土体要多.
(2) 在50 kPa压力下的膨胀率V50.从表 1可知, 襄荆高速公路膨胀土V50≤ 0的指标占28.7%, 而V50> 0的指标占71.3%;汉十高速公路膨胀土V50≤ 0的指标占99.2%.这说明: 汉十高速公路膨胀土体在50 kPa压力下浸水饱和后的压缩下沉量基本上都大于其膨胀量, 一般不产生体积增大的现象而呈现压缩的特征, 由此可判断, 该处膨胀土体在遇较小附加压力作用下, 即使含水量增大, 也基本不显现膨胀作用的效果, 而襄荆高速公路膨胀土体在这一点上分异性则较大.
(3) 膨胀力pe.从表 1可知, 两处膨胀土体膨胀力pe> 30 kPa的指标分别占16.2%及15.3%, pe≤ 30 kPa的指标分别占83.8%及84.7%, 基本上彼此接近.这说明两处土体在浸水条件下均具有膨胀力, 但总体上膨胀力较小.另外襄荆高速公路膨胀土体膨胀力pe> 30 kPa的指标分布中, 膨胀力pe最大可达110 kPa, 表现出土体的膨胀力指标变化大.
(4) 缩限ωs.从表 1可知, 两处膨胀土体缩限ωs≤ 10的指标分别占29.2%及28.6%, 10 < ωs≤ 12的指标分别占45.3%及43.7%, ωs> 12的指标分别占25.5%及27.7%, 彼此基本相近, 且在此性质上具一定的均一性.因两处膨胀土的天然含水量一般大于各自的缩限含水量, 故该两处土体在失水条件下均产生收缩变形, 且在试验后期, 土样多有干缩裂隙产生.
3.2 指标综述
襄荆高速公路膨胀土体物质来源于其西面的山体, 搬运距离较近, 其大粒径级含量较高, 与汉十高速公路膨胀土相比, 其矿物质成分中石英及长石含量相对较低, 蒙脱石及伊利石的含量相对较高, 致使其膨胀土体的自由膨胀率、膨胀力及在50 kPa压力下的膨胀率指标存在一定的分异性, 出现了具有较高的自由膨胀率、较高的膨胀力及较高的膨胀率的土体.而汉十高速公路膨胀土体处于南襄盆地, 其物质主要来源于其西北的山体, 搬运距离较远, 其粘粒的含量普遍较高, 矿物质成分中石英及长石的含量较襄荆高速公路膨胀土体高, 蒙脱石及伊利石的含量则相对较低, 膨胀土体的自由膨胀率, 膨胀力相对较稳定, 尤其在50 kPa压力下的膨胀率基本上表现为压缩下沉.
-
表 1 本研究用到的核酸序列信息
Table 1. Data sets used in this paper
-
[1] Cano, R. J., Poinar, H. N., Pieniazek, N. J., et al., 1993. Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature, 363 (6429): 536-538. doi: 10.1038/363536a0 [2] DeSalle, R., Gatesy, J., Wheeler, W., et al., 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 257 (5078): 1933-1936. doi: 10.1126/science.1411508 [3] Diedrich, C., 2008. The holotypes of the upper Pleistocene Crocutacr ocuta spelaea and Pantheraleo spelaea of the zoolithen cave hyena den and their palaeo-ecological interpretation. Zoological Journal of the Linnean Society, 154 (4): 822-831. doi: 10.1111/j.1096-3642.2008.00425.x [4] Golenberg, E. M., Giannasi, D. E., Clegg, M. T., et al., 1990. Chloroplast DNA sequence from a Miocene Magnolia species. Nature, 334 (6267): 656-658. [5] Huang, W. B., 1989. Taxonomy of the hyaenidae (hyaena and crocuta) of the pleistocene in China. Vertebrata Palasiatica, 27 (3): 197-204 (in Chinese with English abstract). [6] Jenks, S. M., Werdelin, L., 1998. Taxonomy and systemetics of living hyaenas (Family Hyaenidae). In: Mills, M. G. L., Hofer, H., compilers. Hyaenas: Status survey and conservation action plan. IUCN/SSC Hyaena Specialist Group, I UCN Gland, Switzerland, 8-17. [7] Koepfli, K. P., Jenks, S. M., Eizirik, E., et al., 2006. Molecular systematics of the hyaenidae: Relationships of a relictual lineage resolved by a molecular supermatrix. Molecular Phylogenetics and Evolution, 38 (3): 603-620. doi: 10.1016/j.ympev.2005.10.017 [8] Kurtén, B., 1956. The status and affinities of Hyaena sinensis Owen and Hyaena ultima Matsumoto. Amer. Mus. Novit., 1764: 1-48. [9] Kurtén, B., 1957. The bears and hyenas of the interglacials. Quaternaria, 4: 69-81. [10] Markova, A. K., Smirnov, N. G., Kozharinov, A. V., et al., 1995. Late Pleistocene distribution and diversity of mammals in northern Eurasia. Paleontol. Evol., 28 (29): 5-134. [11] Rohland, N., Malaspinas, A., Pollack, J. L., et al., 2007. Proboscidean mitogenomics: Chronology and mode of elephant evolution using mastodon as outgroup. Plos Biology, 5 (8): 1663-1671. [12] Rohland, N., Pollack, J. L., Nagel, D., et al., 2005. The population history of extant and extinct hyenas. Molecular Biology and Evolution, 22 (12): 2435-2443. doi: 10.1093/molbev/msi244 [13] Römpler, H., Krause, J., Dear, P. H., et al., 2006. Multiplex amplification of ancient DNA. Nature, 1 (2): 720-728. [14] Sheng. G. L., Lai, X. L., Hou, X. D., 2009. Standard experimental system and new technologies on ancient DNA research. Chinese Journal of Biochemistry and Molecular Biology, 25 (2): 116-125 (in Chinese with English abstract). [15] Sheng. G. L., Wu, L. J., Hou, X. D., et al., 2009. Short sequence effect of ancient DNA on mammoth phylogenetic analyses. Frontier of Earth Science in China, 3 (1): 100-106. doi: 10.1007/s11707-009-0010-z [16] Tong, H. W., 2007. Occurrences of warm-adapted mammals in North China over the Quaternary period and their paleo-environmental significance. Science in China (Series D), 50 (9): 1327-1340. doi: 10.1007/s11430-007-0096-7 [17] Tseng, Z. J., Jin, C. Z., Liu, J. Y., et al., 2008. Fossil Hyaenidae (mammalia: carnivora) from Huainan, Anhui Province, China. Vertebrata Palasiatica, 46 (2): 133-146. [18] Turner, A., 1984. The interpretation of variation in fossil specimens of spotted hyena (Crocuta crocuta Erxleben, 1777) from Sterkfontein valley sites (mammalian: carnivora). Ann. Transvaal Mus., 33 (27): 399-418. [19] Turner, A., Antón, M., Werdelin, L., 2008. Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. Geobios, 41 (5): 677-687. doi: 10.1016/j.geobios.2008.01.001 [20] Wayne, R. K., Leonard, J. A., Cooper, A., 1999. Full of sound and fury: History of ancient DNA. Annu. Rev. Ecol. Syst., 30: 457-477. doi: 10.1146/annurev.ecolsys.30.1.457 [21] Watts, H. E., Holekamp, K. E., 2007. Hyena societies. Current Biology, 17 (16): 657-660. doi: 10.1016/j.cub.2007.06.002 [22] Werdelin, L., 1999. Studies of fossil hyaenas: Affinities of Lycyaenops rhomboideae Kretzoi from Pestlörinc, Hungary. Zoological Journal of the Linnean Society, 126 (3): 307-317. [23] Werdelin, L., Solounias, N., 1991. The hyaenidae: Taxonomy, systematics and evolution. The Fossils and Strata, 30: 1-104. [24] Wozencraft, W. C., 1993. Carnivora. In: Wilson, D. E., Reeder, D. M., eds., Mammal species of the world: A taxonomic and geographic reference. Smithsonian Institution Press, Washington DC, 279-348. [25] Wurster, D. H., Benirschke, K., 1968. Comparative cytogenetic studies in the order carnivora. Chromosoma, 24 (3): 336-382. doi: 10.1007/BF00336201 [26] Yang, S. J., Lai, X. L., 2003. The first ancient DNA study of mammoth in China. Earth Science—Journal of China University of Geosciences, 28 (2): 136, 142 (in Chinese with English abstract). [27] Yang, S. J., Lai, X. L., Shi, S. H., et al., 2006. New ancient DNA sequences suggest high genetic diversity for the Woolly Mammoth (Mammuthus primigenius). Progress in Nature Science, 16 (4): 380-386. [28] Yang, Z. Q., Zhang, H. Q., Zhang, J., et al., 2006. Degradative factor analysis of ancient DNA preserved in human bones. J. Fourth Mil. Med. Univ., 27 (1): 90-92 (in Chinese with English abstract). [29] 黄万波, 1989. 我国更新世两属鬣狗(Hyaena, Crocuta) 的关系与分类. 古脊椎动物学报, 27 (3): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZD198903006.htm [30] 盛桂莲, 赖旭龙, 侯新东, 2009. 古DNA实验体系与技术. 中国生物化学与分子生物学报, 25 (2): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ200902005.htm [31] 同号文, 2007. 第四纪以来中国北方出现过的喜暖动物及其古环境意义. 中国科学(D辑), 37 (7): 922-933. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200707007.htm [32] 杨淑娟, 赖旭龙, 2003. 中国首例猛犸象古DNA序列. 地球科学——中国地质大学学报, 28 (2): 136, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302003.htm [33] 杨周岐, 张虎勤, 张金, 等, 2006. 古人类骨骼DNA降解因素分析. 第四军医大学学报, 27 (1): 90-92. doi: 10.3321/j.issn:1000-2790.2006.01.027 -