Enhanced Biodegradation Potential of Tetrachloroethylene under Natural Groundwater Environment
-
摘要: 采用批实验方法, 以天然地下水为基础培养液, 利用在实验室条件下培养驯化的微生物, 以醋酸作为共代谢基质, 加入酵母粉提供氮源, 研究了四氯乙烯(PCE) 的降解效果.研究表明, 通过强化影响PCE降解的某些因素, 在20℃的地下水环境中, PCE可以很快转化为三氯乙烯(TCE), 并可以进一步转化为二氯乙烯(DCEs), 但没有检测到DCEs的脱氯产物.PCE的脱氯速率为0.1848d-1, 半衰期为3.75d.亦研究了低温环境下PCE的降解效果.结果表明, 在低温环境下, PCE也可以发生生物降解, 但是脱氯速率相对较慢, 为0.0761d-1, 半衰期为9.11d, 且终产物为TCE.Abstract: In order to investigate tetrachoroethylene (PCE) biodegradation potential by some enhanced factors, the experiment was carried out under natural groundwater condition by batch experiment.Microorganism cultured in the laboratory was added to the microcosm with acetic acid as electron donor and yeast powder as nitrogen source.Experimental results indicate that PCE could be dechlorinated to trichloroethylene (TCE) and dichloroethylene (DCEs) under 20 ℃.TCE was the primary dehalogenation product, and small amounts of dichloroethylenes (DCEs) were also detected.No significant further DCEs degradation was detected.The degradation rate of PCE was 0.184 8 d-1, and the half life was 3.75 d.Under 12 ℃ condition, PCE biodegradation could occur; however, the terminal product was only TCE without DCEs, and degradation rate of PCE was 0.076 1 d-1, which was relatively slow compared to that under 20 ℃.
-
Key words:
- tetrachloroethylene /
- enhanced biodegradation /
- natural groundwater
-
表 1 地下水成分
Table 1. Compositions of groundwater
表 2 驯化过程的PCE浓度
Table 2. PCE concentrations during acclimation
表 3 液相中PCE的降解碳平衡
Table 3. Carbon balance of PCE degradation in liquid phase
-
[1] Aulenta, F., Bianchi, A., Majone, M., et al., 2005. Assessment of natural or enhanced in situ bioremediation at achlorinated solvent-contaminated aquifer in Italy: A microcosm study. Environment International, 31 (2): 185-190. doi: 10.1016/j.envint.2004.09.014 [2] Aulenta, F., Majone, M., Verbo, P., et al., 2002. Complete dechlorination of tetrarchloroethene to ethene in pres-ence of methanogenesis and acetogenesis by an anaero-bic sediment microcosm. Biodegradation, 13 (6): 411-424. doi: 10.1023/A:1022868712613 [3] Aulenta, F., Rossetti, S., Majone, M., et al., 2004. Detectionand quantitative estimation of Detectionand quantitative estimation of Dehalococcoides spp. in adechlorinating bioreactor by a combination of fluorescent in situ hybridisation (FISH) and kinetic analysis. Applied Microbiology and Biotechnology, 64 (2): 206-212. doi: 10.1007/s00253-003-1503-4 [4] Boopathy, R., 2002. Anaerobic biotransformation of carbon tetrachloride under various electron acceptor conditions. Bioresource Technology, 84 (1): 69-73. doi: 10.1016/S0960-8524(02)00010-X [5] Carter, S. R., Jewell, W. J., 1993. Biotransformation of tetrachloroethylene by anaerobic attached-films at low tem-peratures. Water Research, 27 (4): 607-615. doi: 10.1016/0043-1354(93)90170-M [6] Chang, Y. C., Okeke, B. C., Hatsu, M., et al., 2001. In vitro dehalogenation of tetrachloroethylene (PCE) by cellfree extracts of Clostridium bifermentans DPH-1. Bioresource Technology, 78 (2): 141-147. doi: 10.1016/S0960-8524(01)00005-0 [7] Distefano, T. D., 1999. The effect of tetrachloroethene on bological dechlorination of vinyl chloride: Potential implcation for natural bioattenuation. Wat. Res., 33 (7) 1688-1694. doi: 10.1016/S0043-1354(98)00374-1 [8] Eisenbeis, M., Bauer-Kreisel, P., Scholz-Muramatsu, H., 1997. Studies on the dechlorination of tetrachloroethylene to cis-1, 2-dichloroethene by dehalospirillum multivorans in biofil ms. Wat. Sci. Tech., 36 (1): 191-198. doi: 10.2166/wst.1997.0044 [9] Ferguson, J. F., Pietari, J. M. H., 2000. Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution, 107 (2): 209-215. doi: 10.1016/S0269-7491(99)00139-6 [10] Gan, L. H., Wu, H., Guo, S. F., 2005. Application on bioaugmenting technology in environmental treatment. China Environmental Protection Industry, 5: 37-39 (in Chinese with English abstract). [11] Haston, Z. C., McCarty, P. L., 1999. Chlorinated ethene half-velocity coefficients (Ks) for reductive dehalogenation. Environ. Sci. Technol., 33 (2): 223-226. doi: 10.1021/es9805876 [12] Isalou, M., 1998. Sequential anaerobic-aerobic biodegradation of tetrachloroethylene (PCE) [Dissertation]. Graduate Department, Civil Engineering University of Toronto, Toronto, Canada. [13] Kao, C. M., Lei, S. E., 2000. Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Wat. Res., 34 (3): 835-845. doi: 10.1016/S0043-1354(99)00213-4 [14] Lee, T. H., Yoshimi, M., Ike, M., et al., 1997. Characterization of an anaerobic soil enrichment capable of dechlorinating high concentrations of tetrachloroethylene. Wat. Sci. Tech., 36 (6-7): 117-124. doi: 10.2166/wst.1997.0582 [15] Li, H. D., Yang, Q., Shang, H. T., 2004a. Anaerobic biodegradation of tetrachlorothylene with methanol as cometabolism substrate. Environmental Science, 25 (3): 84-88 (in Chinese with English abstract). [16] Li, H. D., Yang, Q., Shang, H. T., 2004b. Study on anaerobic biodegradation of tetrachloroethylene with different co-metabolism substrates. Environmental Pollution andControl, 26 (5): 326-328, 354 (in Chinese with Englishabstract). [17] Li, Y., Liu, F., Shi, J. H., et al., 2006. A preliminary studyof anaerobic biodegradation of tetrachloroethylene withacetic acid as co-metabolism substrate. Hydrogeology & Engieering Geology, 33 (3): 7-10, 96 (in Chinesewith English abstract). [18] Liu, F., Li, Y. 2006. The cometabolism degradation of tertrachloroethylene under Fe reducing environment. Bulletin of Mineralogy, Petrology and Geochemistry, 25 (4): 330-334 (in Chinese with English abstract). [19] Lomheim, L. S., 2002. Anaerobic biodegradation of high con-centrations tertrachloroethylene (PCE) and1, 2-dichloroethane (1, 2-DCA) [Dissertation]. University of Toronto, Toronto, Canada. [20] Lu, X. X., Li, G. H., Zhang, X. et al., 2002. Oxidative degradation of chlorinated hydrocarbons under anaerobic conditions. Environmental Science, 23 (4): 37-41 (in Chi-nese with English abstract). [21] Ma, C. W., Wu, Y. Q., Sun, C. X., 2007. Remediation ofgroundwater contaminated by chlorinated hydrocarbons. Environmental Protection Science, 33 (3): 23-25 (in Chinese with English abstract). [22] Magnuson, J. K., Stern, R. V., Gossett, J. M., et al., 1998. Reductive dechlorination of tetrachloroethylene to ethene by a two-component enzyme pathway. Applied and Environment Microbiology, 64 (4): 1270-1275. doi: 10.1128/AEM.64.4.1270-1275.1998 [23] Mao, L., Tang, Y. B., Chen, F. Y., et al., 2007. Progress inbioremediation of waters polluted by refractory organics. Water Purification Technology, 26 (1): 34-38 (inChinese with English abstract). [24] McDade, J., 2002. Demonstration-scale analysis of anaerobic bioremediation of tetrachloroethene DNAPL sourcezone using bioaugmentation and electron donor delivery[Dissertation]. Rice University, Houston, U. S. A. . [25] Pietari, J. M. H., 2002. Characterization of PCE dechlorinating cultures and isolation of a novel PCE to cis-1, 2-DCE halorespiring bacterium[Dissertation]. Universityof Washington Graduate School, Washington, U. S. A. . [26] Qin, H. M., Yin, H., Zhang, N., et al., 2007. Treat ment ofoil and grease wastewater by bioaugmentation technology. Technology of Water Treatment, 33 (3): 33-35 (inChinese with English abstract). [27] Skubal, K. L., 1999. Natural and enhanced bioattenuation potential of an aquifer contaminated by mixed wastes[Dissertation]. The University of Michigan, Detroit, U. S. A. . [28] Wang, L., 2001. Tetrachloroethylene (PCE) and trichloroethylene (TCE) biodegradation with bioreactors[Dissertation]. The Faculty of the Graduate School Univer-sity of Missouri Columbia, Columbia, U. S. A. . [29] Yang, Q., Shang, H. T., Li, H. D., 2006. Progress on tetrachloroethylene (PCE) anaerobic bioremediation. China Biogas, 24 (2): 16-20, 24 (in Chinese with English abstract). [30] Yang, Q., Xi, H. B., Shang, H. T., et al., 2007. Biosorptionand anaerobic degradation of tetrachlorothylene. Geoscience, 21 (1): 170-174 (in Chinese with English abstract). [31] Zhou, S. Q., 2003. Environmental biotech. Science Press, Beijin (in Chinese). [32] 甘丽华, 吴昊, 郭树凡, 2005. 生物强化技术在环境治理中的应用. 中国环保产业, 5: 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY200505017.htm [33] 李惠娣, 杨琦, 尚海涛, 2004a. 甲醇为共代谢基质时四氯乙烯的厌氧生物降解. 环境科学, 25 (3): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200403017.htm [34] 李惠娣, 杨琦, 尚海涛, 2004b. 不同共代谢基质下四氯乙烯厌氧生物降解研究. 环境污染与防治, 26 (5): 326-328, 354. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200405002.htm [35] 李烨, 刘菲, 史敬华, 等, 2006. 以醋酸为共代谢基质时四氯乙烯的生物降解初步研究. 水文地质工程地质, 33 (3): 7-10, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200603001.htm [36] 刘菲, 李烨, 2006. 铁还原环境下四氯乙烯的共代谢降解. 矿物岩石地球化学通报, 25 (4): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200604007.htm [37] 卢晓霞, 李广贺, 张旭, 等, 2002. 厌氧条件下有机氯代烃污染物的氧化降解. 环境科学, 23 (4): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200204007.htm [38] 马长文, 仵彦卿, 孙承兴, 2007. 受氯代烃类污染的地下水环境修复研究进展. 环境保护科学, 33 (3): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBH200703007.htm [39] 毛莉, 唐玉斌, 陈芳艳, 等, 2007. 难降解有机物污染水体微生物修复研究进展. 净水技术, 26 (1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200701014.htm [40] 秦华明, 尹华, 张娜, 等, 2007. 生物强化技术处理含油脂废水的研究. 水处理技术, 33 (3): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ200703009.htm [41] 杨琦, 尚海涛, 李惠娣, 2006. 四氯乙烯(PCE) 厌氧生物修复的国外研究进展. 中国沼气, 24 (2): 16-20, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZQ200602003.htm [42] 杨琦, 席宏波, 尚海涛, 等, 2007. 四氯乙烯的生物吸附和厌氧生物降解研究. 现代地质, 21 (1): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200701022.htm [43] 周少奇, 2003. 环境生物技术. 北京: 科学出版社.