• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    煤体结构差异的吸附响应及其控制机理

    张小东 刘浩 刘炎昊 苏现波

    张小东, 刘浩, 刘炎昊, 苏现波, 2009. 煤体结构差异的吸附响应及其控制机理. 地球科学, 34(5): 848-854.
    引用本文: 张小东, 刘浩, 刘炎昊, 苏现波, 2009. 煤体结构差异的吸附响应及其控制机理. 地球科学, 34(5): 848-854.
    ZHANG Xiao-dong, LIU Hao, LIU Yan-hao, SU Xian-bo, 2009. Adsorption Respondence of Different Coal Body Structures and Its Influence Mechanism. Earth Science, 34(5): 848-854.
    Citation: ZHANG Xiao-dong, LIU Hao, LIU Yan-hao, SU Xian-bo, 2009. Adsorption Respondence of Different Coal Body Structures and Its Influence Mechanism. Earth Science, 34(5): 848-854.

    煤体结构差异的吸附响应及其控制机理

    基金项目: 

    国家自然科学基金 40602017

    详细信息
      作者简介:

      : 张小东(1971-), 男, 博士, 副教授.从事煤层气地质与工程、瓦斯地质研究.E-mail: Z-wenfeng@163.com

    • 中图分类号: P618.11

    Adsorption Respondence of Different Coal Body Structures and Its Influence Mechanism

    • 摘要: 为了研究不同煤体结构煤的吸附行为差异和作用机理, 以焦作煤田为研究区, 对煤体破坏严重的糜棱煤和原生结构煤的岩石学组成、吸附性和孔隙性进行了测试, 结果表明: 煤体破坏后, 吸附、解吸能力增大; 温度增加, 煤的吸附能力均为下降, 解吸能力增加.相比于原生结构煤, 随着温度增加, 糜棱煤吸附能力下降趋势和解吸能力增大趋势比原生结构煤更为明显.研究认为: 煤体破坏后, 不同孔径段的孔隙数量均有增大, 使得煤样容纳气体的能力增大.特别是大中孔含量的增大, 导致了糜棱煤样更容易发生解吸.另外, 煤体破坏后的煤级增高、镜质组含量增大和惰质组含量减小也对吸附能力增大具有重要作用, 而灰分含量不是决定两类煤吸附性差异的主要因素.

       

    • 图  1  不同温度下古汉山井田两类煤的等温吸附曲线

      Fig.  1.  Isotherm adsorption curves of two kinds of coals of Guhanshan coalfield under different temperatures

      图  2  不同温度下两类煤的吸附参数变化

      Fig.  2.  Langmuir adsorption parameter changes of two kinds of coals under different temperatures

      图  3  温度增加1 ℃后两类煤的吸附减少量与压力的关系

      Fig.  3.  Relation between the absoption decrement of two kinds of coals under perunit temperature rise and pressure

      图  4  显微组分含量与Langmuir体积参数(VL) 的关系

      Fig.  4.  Relation between maceral composition and Lang muirvolume parameter

      图  5  灰分含量(Ad) 与Langmuir体积参数(VL) 的关系

      Fig.  5.  Relation between ash content and Langmuir volume parameter

      表  1  煤样的显微组分定量统计结果

      Table  1.   Quantitative statistic data of the macerals content of different coal samples

      表  2  煤样孔隙结构参数测试结果

      Table  2.   Measured data of pore structure parameters of different coal samples

      表  3  煤样吸附性实验测试结果

      Table  3.   Adsorption experiment results of the different coal samples

    • [1] Fu, X.H., Qin, Y., 2003. Theories and techniques of permeability prediction of multiphase medium coalbed-methane reservoirs. China University of Mining and Technology Press, Xuzhou (in Chinese).
      [2] Fu, X.H., Qin, Y., Li, G.Z., et al., 2002. Adsorption experiment of extrahigh rank coal under the condition of equilibrium moisture content. Petroleum Geology & Experiment, 24(2) : 177 -180 (in Chinese with English abstract).
      [3] Guo, L.W., Yu, Q.X., Wang, K., 2000. Experimental study on change in coal tempera ture during adsorbing gas. Journal of China University of Mining and Technology, 29 (3) : 287-289 (in Chinese with Eng lish abstract).
      [4] Huoduote, B.B., 1966. Coal and gas outburst. Translated by Song, S.Z., Wang, Y.A. . China Industry Press, Beijing (in Chinese).
      [5] Jiang, B., Qin, Y., 1998. Evolution mechanism of structures of deformed coals and its geological significance. China University of Mining and Technology Press, Xuzhou (in Chinese).
      [6] Joubert, J.I., Grein, C.T., Bienstock, D., 1973. Sorption of methane in moist coal. Fuel, 52(3) : 181-185. doi: 10.1016/0016-2361(73)90076-8
      [7] Krooss, B.M., Bergen, F.V., Gensterblum, Y., et al., 2002. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibr ated Pennsy lvanian Coals. International Journal of Coal Geology, 51(2) : 69 -92. doi: 10.1016/S0166-5162(02)00078-2
      [8] Lax minarayana, C., Crosdale, P.J., 1999. Role of coal ty pe and rank on methane sorption characteristics of Bow en basin, A ustralia coals. International Journal of Coal Geology, 40(4) : 309 -325. doi: 10.1016/S0166-5162(99)00005-1
      [9] Levy, J.H., Day, S.J., Killingley, J.S., 1997. Methane capacities of Bowen basin coals related to coal properties. Fuel, 76(9) : 813-819. doi: 10.1016/S0016-2361(97)00078-1
      [10] Qian, K., Zhao, Q.B., Wang, Z, C., et al., 1996. The exploration and production theories and experimental testing and techniques of coalbed methane. Pertoleum Industry Press, Beijing (in Chinese).
      [11] Qin, Y., 2003. A dvances and reviews on research of coalbed gas geology in China. Geological Journal of China Universities, 9(3) : 339-358 (in Chinese with English abstract).
      [12] Yang, L.W., Sun, M.Y., 2001. Peculiarites of China CBM reservoirs and their dictation on CBM production technology. Natural Gas Industry, 21(6) : 17-19 (in Chinese with English abstract).
      [13] Yuan, C.F., 1985. Tectonic coal and coal and gas outburst. Gas Geology, (Started) : 45-52 (in Chinese with English abstract).
      [14] Zhang, Q., Yang, X.L., 1999. Isothermal adso rption of coals on me thane under equilibrium moisture. Journal of China Coal Society, 24(6) : 566-570 (in Chinese with English abstract).
      [15] Zhong, L.W., Zhang, X.M., 1990. Therelation of adsor ption capability of coal and coal me tamo rphose degree and coal macera. Coal Geology and Exploration, 18 (4) : 29-35 (in Chinese with English abstract).
      [16] Zhong, L.W., Zheng, Y.Z., Yuan, Z.R., et al., 2002. The adso rption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coalbed gas. Journal of China Coal Society, 27 (6) : 581-585 (in Chinese with English abstract).
      [17] 傅雪海, 秦勇, 2003. 多相介质煤层气储层渗透率预测理论与方法. 徐州: 中国矿业大学出版社.
      [18] 傅雪海, 秦勇, 李贵中, 等, 2002. 特高煤级煤平衡水条件下的吸附实验. 石油实验地质, 24(2) : 177-180. doi: 10.3969/j.issn.1001-6112.2002.02.016
      [19] 郭立稳, 俞启香, 王凯, 2000. 煤吸附瓦斯过程温度变化的试验研究. 中国矿业大学学报, 29(3) : 287-289. doi: 10.3321/j.issn:1000-1964.2000.03.015
      [20] 霍多特, B.B., 1966. 煤与瓦斯突出. 宋士钊, 王佑安译. 北京: 中国工业出版社.
      [21] 姜波, 秦勇, 1998. 变形煤的结构演化机理及其地质意义. 徐州: 中国矿业大学出版社.
      [22] 钱凯, 赵庆波, 汪泽成, 等, 1996. 煤层甲烷气勘探开发理论与实验测试技术. 北京: 石油工业出版社.
      [23] 秦勇, 2003. 中国煤层气地质研究进展与述评. 高校地质学报, 9(3) : 339-358. doi: 10.3969/j.issn.1006-7493.2003.03.002
      [24] 杨陆武, 孙茂远, 2001. 中国煤层气藏的特殊性及其开发技术要求. 天然气工业, 21(6) : 17-19. doi: 10.3321/j.issn:1000-0976.2001.06.005
      [25] 袁崇孚, 1985. 构造煤和煤与瓦斯突出. 瓦斯地质, (创刊号) : 45 -52. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101017.htm
      [26] 张群, 杨锡禄, 1999. 平衡水条件下煤对甲烷的等温吸附特性研究. 煤炭学报, 24(6) : 566-570. doi: 10.3321/j.issn:0253-9993.1999.06.002
      [27] 钟玲文, 张新民, 1990. 煤的吸附能力与其煤化程度和煤岩组成间的关系. 煤田地质与勘探, 18(4) : 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT199004008.htm
      [28] 钟玲文, 郑玉柱, 员争荣, 等, 2002. 煤在温度和压力综合影响下的吸附性能及气含量预测. 煤炭学报, 27 (6) : 581-585. doi: 10.3321/j.issn:0253-9993.2002.06.005
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  3230
    • HTML全文浏览量:  106
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-01-20
    • 刊出日期:  2009-09-25

    目录

      /

      返回文章
      返回