Quantitative Simulation and New Consideration on the Transformation System of the Accommodation Space
-
摘要: 为探讨盆地两侧可容纳空间和层序叠加模式的非一致性变化, 利用SEDPAK二维层序模拟软件, 通过考虑控制层序沉积过程的不同参数, 对可容纳空间转换系统进行定量模拟并提出新的认识.模拟结果表明, 盆地两侧同期层序叠加模式可以分为"同步"和"非同步"两种, 同步叠加模式多出现在层序的低位体系域及高位体系域后期, 非同步叠加模式多出现在层序的水进体系域及高位体系域初期.多种地质参数的合理组合, 盆地两侧同期层序均可形成非同步叠加模式.非同步叠加模式对体系域界面的识别、层序对比具有一定的参考价值.Abstract: To discuss the non-synchronous change of accommodation space and sequence stacking patterns in both sides of a basin, using the SEDPAK two-dimensional stratigraphic modelling program, the "transformation system of the accommodation space" within a basin was simulated by considering the various parameters controlling the deposition of a sequence. The simulation results indicate that isochronous sequence stratigraphy within a basin may exhibit both synchronous and non-synchronous stacking patterns at different part of the basin. Synchronous stacking patterns were observed to be primarily developed during the lowstand system tracts and the late highstand system tracts. Non-synchronous stacking patterns were found to be often associated with the transgressive system tracts and the early highstand system tracts. The development of non-synchronous stacking patterns may occur under a number of circumstances within a basin with the right combination of various parameters. Nonsynchronous stacking patterns of isochronous sequence stratigraphy may provide new reference to identify system tracts interface and develop sequence stratigraphie correlation.
-
图 1 构造活动以支点做“跷跷板”式运动(可容纳空间转换系统, 据Jiang et al., 2005修改)
A.支点左侧沉降, 右侧抬升; B.支点左侧抬升, 右侧沉降
Fig. 1. Seesaw movement of tectonic subsidence via a fulcrum
-
[1] Cai, L.G., Zhou, Y., Bai, Z.R., 2008. Main controlling factors on hydrocarbon accumulation and distribution in marine sedimentary sequences in South China. Journal of Earth Science, 19(6) : 645-655. [2] Coe, A.L., Church, K.D., 2003. Sequence stratigraphy. In: Coe, A.L., Bosence,, D.W.J., Church, K.D., et al., eds., The sedimentary record of sea-level change. Cambridge University Press, Cambridge, Chapter 4, 57-98. [3] Feng, Y.L., Zhou, H.M., Li, S.T., et al., 2004. Sequence types and subtle trap exploration in continental rift basin: A case study of Lower Tertiary of the Nanpu depression. Earth Science—Journal of China University of Geosciences, 29(5) : 603 -608 (in Chinese with English abstract). [4] Galloway, W.E., 1989. Genetic stratigraphic sequences in basin analysis I : A rchitecture and genesis of floodingsurface bounded depositional units. AAPG Bulletin, 73(2) : 125-142. [5] Goodbred, S.L., Kuehl, S.A., 2000. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development : Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sedimentary Geology, 133(3 -4) : 227-248. doi: 10.1016/S0037-0738(00)00041-5 [6] Gu, J.Y., Zhang, X.Y., 2006. The progress on onshore sequence stratigraphy and their application in the petroleum exploration and development. In: Kuang, L.C., Gu, J.Y., Lǜ, H.T., et al., eds., The new progress on petroleum sequence stratigraphy : The Four th Session of the Oil and Gas Sequence Stratigraphy Academic Collection. Petroleum Industry Press, Beijing, 1-12 (in Chinese). [7] Jiang, S., Wang, H., Weimer, P., et al., 2008. Sequence stratig raphycharac te ristics and sedimentary elements in deepwater. Earth Science—Journal of China University of Geosciences, 33(6) : 825 -833 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.099 [8] Jiang, Z.X., Lu, H.B., Yu, W.Q., et al., 2005. Transformation of accommodation space of the Cretaceous Qingshankou Formation, the Songliao basin, NE China. Basin Research, 17(4) : 569-582. doi: 10.1111/j.1365-2117.2005.00275.x [9] Jiang, Z.X., Zhang, L., Lin, W., et al., 2008. Research on the accommodation space transformation system in the Esz3 member of the Gu' nan sag. Earth Science Frontiers, 15(2) : 26 -34 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60026-3 [10] Leckie, D.A., 1994. Canterbury plains, New Zealand —Implications for sequence stratigraphic models. AAPG Bulletin, 78(8) : 1240 -1256. [11] Li, S.T., Pan, Y.L., Lu, Y.C., et al., 2002. Key technology of prospecting and exploration of subtle traps in Lacustrine fault basins : Sequence stratigraphic researches on the basis of high resolution seismic survey. Earth Science—Journal of China University of Geosciences, 27(5) : 592-598 (in Chinese with English abstract). [12] Liu, K.Y., Liang, T.C.K., Paterson, L., et al., 1998. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sedimentary Geology, 122(1-4) : 181-191. doi: 10.1016/S0037-0738(98)00105-5 [13] Posamentier, H.W., Allen, G.P., 1993. Variability of the sequence stratigr aphic model : Effects of local basin factors. Sedimentary Geology, 86(1 -2) : 91-109. [14] Posamentier, H.W., Morris, W.R., 2000. A spects of the stratal architecture of for cedreg ressive deposits. In : Hunt, D., Gawthor pe, R.L., eds., Sedimentary responses to forced regressions. Geological Society Special Publications, 172 : 19-46. [15] Posamentier, H.W., Vail, P.R., 1988. Eustatic controls on clastic deposition: Ⅱ-Sequence and systems tract models. In : Wilgus, C.H., Hastings, B.S., Kemdall, C.G. St. C., et al., eds., Sea-level changes —An integrated approach. SEPM Special Publication, 42: 125-154. [16] Thorne, J.A., Swift, D.J.P., 1991. Sedimentation on continental margins, Ⅱ : Application of the regime concept. In: Swift, D.J.P., Oertel, G.F., Tillman, R.W., et al., eds., Shelf sand and sandstone bodies. Int. Assoc. Sedimentol. Spec. Publ., 14: 33 -58. [17] Vail, P.R., Mitchum, R.M., Thompson, S., 1977. Seismic stratigraphy and global changes of sea level, Part 4, Global cycles of relative changes of sea level. In: Payton C.E., ed., Seismic stratigraphy —Applications to hydrocarbon exploration. AAPG Memoir, 26: 83 -97. [18] Van Wagoner, J.C., Mitchum, R.M., Campion, K.M., et al., 1990. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, 7 : 1-8. [19] Zhu, H.T., Du, Y.S., Liu, K.Y., et al., 2008. Sequence stratigraphic delineation and correlation of the Dongying Formation in the nearshore and adjacent sea areas, Bohai Bay basin. Journal of China University of Geosiences, 19(1) : 54-64. doi: 10.1016/S1002-0705(08)60024-2 [20] 冯有良, 周海民, 李思田, 等, 2004. 陆相断陷盆地层序类型与隐蔽油气藏勘探———以南堡凹陷古近系为例. 地球科学———中国地质大学学报, 29(5) : 603 -608. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405015.htm [21] 顾家裕, 张兴阳, 2006. 陆相层序地层学进展及在油气勘探开发中的应用. 见: 匡立春, 顾家裕, 吕焕通, 等, 油气层序地层学新进展———全国第四届油气层序地层学大会学术论文集. 北京: 石油工业出版社, 1-12. [22] 蒋恕, 王华, W eimer Paul, 2008. 深水沉积层序特点及构成要素. 地球科学———中国地质大学学报, 33 (6) : 825-833. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806011.htm [23] 姜在兴, 张乐, 吝文, 等, 2008. 孤南洼陷古近系沙三段中亚段可容空间转换系统研究. 地学前缘, 15(2) : 26 -34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802004.htm [24] 李思田, 潘元林, 陆永潮, 等, 2002. 断陷湖盆隐蔽油藏预测及勘探的关键技术———高精度地震探测基础上的层序地层学研究. 地球科学———中国地质大学学报, 27 (5) : 592-598 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205018.htm