Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media
-
摘要: 为认识混相状态的CO2在油藏中的渗流特征, 利用高温高压三维模拟装置对CO2-地层原油体系在油藏环境条件下的混相驱替过程进行研究.实验发现: 模型产出液量与注入量存在较大差异; 采收率、含水和气油比曲线亦表现出CO2在孔隙介质中渗流的复杂特征.由实时监测的含水饱和度分布场图分析认为: CO2与原油混相后, 流体粘度降低、渗流阻力减小, 这是提高采收率的重要原因之一; 同时, CO2/原油相与部分接触水能形成近似于三相混相的状态.实验研究还表明CO2以高密度气体形式进入饱和水、饱和油无法进入的微孔隙, 这是注入量和产出量不一致的主要原因.Abstract: At present, oil recovery by CO2 driving is getting increasingly important.In order to probe into the flow mechanism of CO2 in miscible state, a high temperature and high pressure 3-D device was used to study miscible flooding of CO2 and oil.With this experiment, it is found that there is a big difference between the production and the injection volume.The complex flowing characteristics of CO2 flooding in porous media are observed in the recovery, water cut and gas-oil ratio curves.By analyzing water saturation distribution map which is measured by saturation probe, it is proved that CO2 and oil can be miscible.The viscosity of miscible liquid and flowing pressure decreases, which is one of the important mechanisms in enhanced oil recovery.At the same time, miscible CO2 and oil contacted with water can make up a similar 3 phase state.Experiment results also show that the main reason for the difference between the production and the injection is that CO2 can flow into micro pores in high density gas state while water and oil cann't.
-
Key words:
- CO2 flooding /
- miscible state /
- plate model /
- saturation /
- flowing characteristic
-
表 1 油藏条件及地层原油性质
Table 1. Reservoir condition and properties of crude oil
表 2 模型条件及控制参数
Table 2. Model and its controlling parameters
表 3 各阶段驱替效率
Table 3. Oil recovery efficiency for various stages
-
[1] Gao, Y. J., Tian, M. R., Jia, G. H., 2007. Physical simulation about sandbody physical property control onforming lithological reservoirs. Earth Science—Journal of China University of Geosciences, 32 (2): 274-278 (in Chinese with English abstract). [2] Hao, Y. M., Bo, Q. W., Chen, Y. M., 2005. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development. 32 (2): 110-112 (in Chinese with English abstract). http://www.researchgate.net/publication/239817532_Laboratory_Investigation_of_CO2_Flooding [3] Hao, Z. C., Li, L., Wang, J. H., et al., 2007. Impact of climate change on surface water resources. Earth Science—Journal of China University of Geosciences, 32 (3): 425-431 (in Chinese with English abstract). [4] Holm, W. L., 1987. CO2 flooding processing evaluation. Journal of Petroleum Technology, 11: 1337-1342. [5] Holm, W. L., O'Brien, L. J., 1971. CO2 flooding pilot test in Middles oil field. Journal of Petroleum Technology, 4: 431-442. [6] Khataniar, S., Kamath, V. A., Patil, S. L., et al., 1999. CO2 and miscible gas injection for enhanced recovery of schrader bluff heavy oil. SPE International Thermal Operations and Heavy Oil Symposium. SPE (54085): 1-17. [7] Kriens. M, A., 1989. CO2 Flooding mechanismand engineering design. Petroleum Industrial Press, Beijing. [8] Langston, M. V., Hoadley, S. F., Young, D. N., 1988. SACROC unit CO2 flooding ultimate evaluation. SPE EOR Symposium, 4 (16-21), Tulsa, Oklahoma, SPE-17321-MS. [9] Li, X. L., Li, Z. Q., 2004. Physical simulation on miscible CO2 flooding in long-core model. Petroleum Exploration and Development, 31 (5): 102-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200405029.htm [10] Mu, L., Wu, D. X., Zhou, G., et al., 2007. Changes in Atlantic thermohaline circulation under different at mospheric CO2 scenarios. Earth Science—Journal of China University of Geosciences, 32 (1): 141-146 (in Chinese with English abstract). http://www.researchgate.net/publication/283595296_Changes_in_atlantic_thermohaline_circulation_under_different_atmospheric_CO2_scenarios [11] Qamar, M. M., Islam, M. R., 2000. CO2 Injection in theWeyburn field of Canada: Optimization of enhanced oil recovery and greenhouse gas storage with horizontal wells. SPE/DOE Improved Oil Recovery Symposium. SPE (59327): 1-16. [12] Xie, S. X., 1991. Laboratory investigation of CO2 flooding for Daqing oil field. Daqing Petroleum Geology and Exploration, 10 (4): 32-35 (in Chinese with English abstract). [13] Xu, H., Qin, J. S., Wang, J. L., et al., 2007. Physical simulation on polymer flooding macro flowing mechanism of 3D model. Petroleum Exploration and Development, 34 (3): 36-40 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syktykf200703018 [14] 高永进, 田美荣, 贾光华, 2007. 砂体物性对岩性油藏成藏控制作用物理模拟. 地球科学——中国地质大学学报, 32 (2): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702017.htm [15] 郝永卯, 薄启炜, 陈月明, 2005. CO2驱油实验研究. 石油勘探与开发, 32 (2): 110-112. doi: 10.3321/j.issn:1000-0747.2005.02.027 [16] 郝振纯, 李丽, 王加虎, 等, 2007. 气候变化对地表水资源的影响. 地球科学——中国地质大学学报, 32 (3): 425-431. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703017.htm [17] 李向良, 李振泉, 2004. 二氧化碳混相驱的长岩心物理模拟. 石油勘探与开发, 31 (5): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405029.htm [18] 牟林, 吴德星, 周刚, 等, 2007. 温室气体浓度增加情景下大西洋温盐环流的演变. 地球科学——中国地质大学学报, 32 (1): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701021.htm [19] 谢尚贤, 1991. 大庆油田CO2驱油室内实验研究. 大庆石油地质与开发, 10 (4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK199104007.htm [20] 徐晖, 秦积舜, 王家禄, 等, 2007. 聚合物驱宏观渗流机理的三维油藏物理模拟研究. 石油勘探与开发, 34 (3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200703020.htm