• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    CO2-原油体系混相状态的渗流特性

    陈兴隆 秦积舜 张可

    陈兴隆, 秦积舜, 张可, 2009. CO2-原油体系混相状态的渗流特性. 地球科学, 34(5): 806-810.
    引用本文: 陈兴隆, 秦积舜, 张可, 2009. CO2-原油体系混相状态的渗流特性. 地球科学, 34(5): 806-810.
    CHEN Xing-long, QIN Ji-shun, ZHANG Ke, 2009. Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media. Earth Science, 34(5): 806-810.
    Citation: CHEN Xing-long, QIN Ji-shun, ZHANG Ke, 2009. Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media. Earth Science, 34(5): 806-810.

    CO2-原油体系混相状态的渗流特性

    基金项目: 

    国家“973”项目 2006CB705804

    详细信息
      作者简介:

      陈兴隆(1974-), 男, 博士, 目前在中国石油勘探开发研究院博士后流动站工作, 主要从事油气渗流理论及应用研究.E-mail: chxlhdpu@163.com

    • 中图分类号: P618

    Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media

    • 摘要: 为认识混相状态的CO2在油藏中的渗流特征, 利用高温高压三维模拟装置对CO2-地层原油体系在油藏环境条件下的混相驱替过程进行研究.实验发现: 模型产出液量与注入量存在较大差异; 采收率、含水和气油比曲线亦表现出CO2在孔隙介质中渗流的复杂特征.由实时监测的含水饱和度分布场图分析认为: CO2与原油混相后, 流体粘度降低、渗流阻力减小, 这是提高采收率的重要原因之一; 同时, CO2/原油相与部分接触水能形成近似于三相混相的状态.实验研究还表明CO2以高密度气体形式进入饱和水、饱和油无法进入的微孔隙, 这是注入量和产出量不一致的主要原因.

       

    • 图  1  实验流程

      1.泵工作介质; 2.ISCO泵; 3.平板砂岩模型; 4.高压釜; 5.恒温箱; 6.电子天平; 7.气体流量计; 8.回压控制器; 9.Rusky泵; 10.信号采集、控制系统; 11.压差传感器; 12.饱和度探针; 13.油、水及CO2中间容器

      Fig.  1.  Flow chart of experiment

      图  2  采收率、含水量及气油比变化曲线

      Fig.  2.  Curves of oil recovery, water cut and GOR

      图  3  气测渗透率和驱替过程中含水饱和度场

      a.模型初始气测渗透率等值图; b.水驱过程-无水期结束状态; c.水驱过程-水驱结束状态; d.段塞驱、CO2驱过程-结束状态

      Fig.  3.  Distribution of gas permeability and water saturation during flooding

      图  4  CO2-原油逐步混相过程(75 ℃)

      Fig.  4.  CO2-crude oil miscible process

      表  1  油藏条件及地层原油性质

      Table  1.   Reservoir condition and properties of crude oil

      表  2  模型条件及控制参数

      Table  2.   Model and its controlling parameters

      表  3  各阶段驱替效率

      Table  3.   Oil recovery efficiency for various stages

    • [1] Gao, Y. J., Tian, M. R., Jia, G. H., 2007. Physical simulation about sandbody physical property control onforming lithological reservoirs. Earth ScienceJournal of China University of Geosciences, 32 (2): 274-278 (in Chinese with English abstract).
      [2] Hao, Y. M., Bo, Q. W., Chen, Y. M., 2005. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development. 32 (2): 110-112 (in Chinese with English abstract). http://www.researchgate.net/publication/239817532_Laboratory_Investigation_of_CO2_Flooding
      [3] Hao, Z. C., Li, L., Wang, J. H., et al., 2007. Impact of climate change on surface water resources. Earth ScienceJournal of China University of Geosciences, 32 (3): 425-431 (in Chinese with English abstract).
      [4] Holm, W. L., 1987. CO2 flooding processing evaluation. Journal of Petroleum Technology, 11: 1337-1342.
      [5] Holm, W. L., O'Brien, L. J., 1971. CO2 flooding pilot test in Middles oil field. Journal of Petroleum Technology, 4: 431-442.
      [6] Khataniar, S., Kamath, V. A., Patil, S. L., et al., 1999. CO2 and miscible gas injection for enhanced recovery of schrader bluff heavy oil. SPE International Thermal Operations and Heavy Oil Symposium. SPE (54085): 1-17.
      [7] Kriens. M, A., 1989. CO2 Flooding mechanismand engineering design. Petroleum Industrial Press, Beijing.
      [8] Langston, M. V., Hoadley, S. F., Young, D. N., 1988. SACROC unit CO2 flooding ultimate evaluation. SPE EOR Symposium, 4 (16-21), Tulsa, Oklahoma, SPE-17321-MS.
      [9] Li, X. L., Li, Z. Q., 2004. Physical simulation on miscible CO2 flooding in long-core model. Petroleum Exploration and Development, 31 (5): 102-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200405029.htm
      [10] Mu, L., Wu, D. X., Zhou, G., et al., 2007. Changes in Atlantic thermohaline circulation under different at mospheric CO2 scenarios. Earth ScienceJournal of China University of Geosciences, 32 (1): 141-146 (in Chinese with English abstract). http://www.researchgate.net/publication/283595296_Changes_in_atlantic_thermohaline_circulation_under_different_atmospheric_CO2_scenarios
      [11] Qamar, M. M., Islam, M. R., 2000. CO2 Injection in theWeyburn field of Canada: Optimization of enhanced oil recovery and greenhouse gas storage with horizontal wells. SPE/DOE Improved Oil Recovery Symposium. SPE (59327): 1-16.
      [12] Xie, S. X., 1991. Laboratory investigation of CO2 flooding for Daqing oil field. Daqing Petroleum Geology and Exploration, 10 (4): 32-35 (in Chinese with English abstract).
      [13] Xu, H., Qin, J. S., Wang, J. L., et al., 2007. Physical simulation on polymer flooding macro flowing mechanism of 3D model. Petroleum Exploration and Development, 34 (3): 36-40 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syktykf200703018
      [14] 高永进, 田美荣, 贾光华, 2007. 砂体物性对岩性油藏成藏控制作用物理模拟. 地球科学——中国地质大学学报, 32 (2): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702017.htm
      [15] 郝永卯, 薄启炜, 陈月明, 2005. CO2驱油实验研究. 石油勘探与开发, 32 (2): 110-112. doi: 10.3321/j.issn:1000-0747.2005.02.027
      [16] 郝振纯, 李丽, 王加虎, 等, 2007. 气候变化对地表水资源的影响. 地球科学——中国地质大学学报, 32 (3): 425-431. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703017.htm
      [17] 李向良, 李振泉, 2004. 二氧化碳混相驱的长岩心物理模拟. 石油勘探与开发, 31 (5): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405029.htm
      [18] 牟林, 吴德星, 周刚, 等, 2007. 温室气体浓度增加情景下大西洋温盐环流的演变. 地球科学——中国地质大学学报, 32 (1): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701021.htm
      [19] 谢尚贤, 1991. 大庆油田CO2驱油室内实验研究. 大庆石油地质与开发, 10 (4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK199104007.htm
      [20] 徐晖, 秦积舜, 王家禄, 等, 2007. 聚合物驱宏观渗流机理的三维油藏物理模拟研究. 石油勘探与开发, 34 (3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200703020.htm
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  3385
    • HTML全文浏览量:  98
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-01
    • 刊出日期:  2009-09-25

    目录

      /

      返回文章
      返回