Hydrocarbon-Generating Dynamic Characteristics of Paleogene Source Rocks in Western Depression, Liaohe Basin
-
摘要: 针对辽河西部凹陷不同岩性、不同干酪根类型18块样品进行了较详细的开放体系生烃动力学研究, 模拟结果反映出相同岩性不同有机质类型烃源岩动力学特征存在较大的差异, 有机质类型越好, 平均活化能越小, 主频活化能对应的反应分数越大, 活化能分布范围越窄, 表明有机质类型对烃源岩生烃动力起着决定性作用.应用平行一级反应模型, 结合埋藏史、热史对辽河西部凹陷古近系烃源岩生烃史进行了定量研究, 层位上, 西部凹陷沙三、沙四段是主力烃源岩, 分别占总生烃量的63.9%和18.5%, 其次为沙一二段和东营组, 4套烃源岩累计生烃量为328.09×108t;东营期是主要的生烃时期.Abstract: The experiments of hydrocarbon-generating dynamics in opening system on 18 samples of different lithology and kerogen types in western depression of Liaohe basin were carried out, and the results show that there exists huge difference between different kerogen types of the same lithology: the better the kerogen types, the lower of the average activity energy; while the larger of the corresponding reaction fraction of dominated frequency activity energy, the narrower distribution range of the activity energy, which shows that the kerogen type has a deciding function on hydrocarbon-generating of the source rock.By using the parallel first-order reaction model, taking the burial history and thermal history into comprehensive consideration, we did a quantitive study on the hydrocarbon-generating history of the source rock of the western depression, Liaohe basin.The results show that the Sha 3 and Sha 4 formations are the main source layers, which account for 63.9% and 18.5% the total amount of hydrocarbon-generating respectively.Sha 1-2 and Dongying formations are the secondary source rock layers, and the accumulative hydrocarbon generation amounts to 328.09×108 t of the four source rock layers in total.The Dongying deposition period is the main hydrocarbon-generating time.
-
表 1 实验样品的基本地质地球化学特征参数
Table 1. Experimental sample parameters of the basic geological and geochemical characteristics
表 2 辽河西部凹陷泥岩样品生烃动力学特征统计
Table 2. Hydrocarbon-generating dynamic characteristics statistics of the mudstone samples in western depression of Liaohe basin
-
[1] Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal cracking of kerogenin open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26 (5-6): 32-339. [2] Boreham, C. J., Horsfield, B., Schenk, H. J., 1999. Predicting the quantities of oil and gas generated from Australian Permian coals, Bowen basin using pyrolytic methods. Marine and Petroleum Geology, 16 (2): 165-188. doi: 10.1016/S0264-8172(98)00065-8 [3] Chang, Z. H., Shen, Z. M., Chen, Y. C., et al., 2005. The characteristics of hydrocarbon-generation kinetics parameters in source rock of Member 1 of Shahejie Formation in Dongpu depression. Journal of Mineralogy and Petrology, 25 (1): 80-82 (in Chinese with English abstract). [4] Cramer, B., Faber, E., Gerling, P., et al., 2001. Reaction kinetics of stable carbon isotopes in natural gas—Insights from dry, open system pyrolysis experiments. Energy Fuels, 15 (3): 517-532. doi: 10.1021/ef000086h [5] Fu, S. Y., Peng, P. A., Zhang, W. Z., et al., 2002. The research on hydrocarbon-generating dynamic of coal in Upper Paleozoic in the Ordos basin. Science in China (Ser. D), 32 (10): 812-818 (in Chinese). [6] Jiang, Q. G., Wang, Q., Cheng, Q. Q., et al., 2005. Discussion on the kinetic characteristics of hydrocarbon generation of different maceral source rocks. Petroleum Geology & Experiment, 27 (5): 512-518, 533 (in Chinese with English abstract). [7] Li, S. Y., Gou, S. H., Shen, R. M., 2001. Study of characteristics and kinetics of catalytic degradation of asphaltene. Acta Sedimentologica Sinica, 19 (1): 136-140 (in Chinese with English abstract). [8] Lu, S. F., 1996. The application of hydrocarbon-generating kinetics theory. Petroleum Industry Press, Beijing, 1-130 (in Chinese). [9] Lu, S. F., Wang, M., Wang, Y. W., et al., 2006. Comparison of simulation results from the closed and open experimental systems and its significance. Acta Sedimentologica Sinica, 24 (2): 282-288 (in Chinese with English abstract). [10] Lu, S. F., Wang, Z. W., Huang, D. F., et al., 1995. Hydrocarbon-generating dynamic of coal macerals. Science in China (Ser. B), 25 (1): 101-107 (in Chinese). [11] Lu, S. F., Xue, H. T., Zhong, N. N., 2002. The chemical kinetic study of the oil preservation threshold. Petroleum Exploration and Development, 29 (6): 1-3 (in Chinese with English abstract). [12] Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical modelling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta, 64 (15): 2673-2687. doi: 10.1016/S0016-7037(00)00377-X [13] Ungerer, P., 1990. State of the art of research in kinetic modeling of oil formation and expulsion. Organic Geochemistry, 16 (1-3): 1-25. doi: 10.1016/0146-6380(90)90022-R [14] Wang, J. A., Wang, Y. L., 1986. Geothermal and paleogeothermal characteristics of Liaohe graben district and their relationship to oil-gas resources. Acta Petrolei Sinica, 7 (2): 21-29 (in Chinese with English abstract). [15] Wang, Y. P., Zhao, C. Y., Wang, Z. Y., et al., 2005. Kinetic method for determining the main gas-generation period of marine organic matters and its application. Petroleum Exploration and Development, 32 (4): 153-158 (in Chinese with English abstract). [16] Zhao, Z., Zhong, N. N., Li, Y. X., et al., 2006. Application of hydrocarbon-generating chemical kinetics in the Puguang gas field, NE Sichuan basin. Petroleum Exploration and Development, 33 (6): 682-688 (in Chinese with English abstract). [17] Zhu, F. B., 2000. Research of organic maturation and petroleum generationin the western depression, Liaohe basin. Geological Science and Technology Information, 19 (3): 53-56 (in Chinese with English abstract). [18] Zhu, F. B., 2002. Research on characteristic of source rock and immature oils distribution in western depression, Liaohe basin. Earth Science—Journal of China University of Geosciences, 27 (1): 25-29 (in Chinese with English abstract). [19] 常振恒, 沈忠民, 陈义才, 等, 2005. 东濮凹陷沙一段源岩的成烃动力学参数特征. 矿物岩石, 25 (1): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200501015.htm [20] 付少英, 彭平安, 张文正, 等, 2002. 鄂尔多斯盆地上古生界煤的生烃动力学研究. 中国科学(D辑), 32 (10): 812-818. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200210003.htm [21] 蒋启贵, 王勤, 承秋泉, 等, 2005. 不同组分烃源岩生烃动力学特征浅析. 石油实验地质, 27 (5): 512-518, 533. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200505014.htm [22] 李术元, 郭绍辉, 沈润梅, 2001. 沥青质催化降解特征及动力学研究. 沉积学报, 19 (1): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200101023.htm [23] 卢双舫, 1996. 有机质成烃动力学理论及其应用. 北京: 石油工业出版社, 1-130. [24] 卢双舫, 王民, 王跃文, 等, 2006. 密闭体系与开放体系模拟实验结果的比较研究及其意义. 沉积学报, 24 (2): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200602017.htm [25] 卢双舫, 王子文, 黄第藩, 等, 1995. 煤岩显微组分的成烃动力学. 中国科学(B辑), 25 (1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199501015.htm [26] 卢双舫, 薛海涛, 钟宁宁, 2002. 石油保存下限的化学动力学研究. 石油勘探与开发, 29 (6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200206000.htm [27] 汪缉安, 王永玲, 1986. 辽河断陷地温、古地温特征与油气资源. 石油学报, 7 (2): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198602004.htm [28] 王云鹏, 赵长毅, 王兆云, 等, 2005. 利用生烃动力学方法确定海相有机质的主生气期及其初步应用. 石油勘探与开发, 32 (4): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504029.htm [29] 赵喆, 钟宁宁, 李艳霞, 等, 2006. 生烃化学动力学在川东北普光气田的应用. 石油勘探与开发, 33 (6): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606007.htm [30] 朱芳冰, 2000. 辽河盆地西部凹陷源岩热演化及生烃史研究. 地质科技情报, 19 (3): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200003011.htm [31] 朱芳冰, 2002. 辽河盆地西部凹陷源岩特征及低熟油分布规律研究. 地球科学——中国地质大学学报, 27 (1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201004.htm