Genetic Identification of Natural Gases in Qingshen Gas Field, Songliao Basin
-
摘要: 通过对松辽盆地徐家围子烃源岩和原油热模拟实验、烷烃气碳同位素组成分析, 认为在高演化阶段单一热力作用可以引起重烃气(δ13C2 > δ13C3 > δ13C4) 碳同位素组成倒转, 但CH4与C2H6(δ13C1 > δ13C2) 却很难发生倒转.庆深气田天然气重甲烷碳同位素组成、烷烃气碳同位素完全倒转、高稀有气体同位素组成(R/Ra > 1.0), 说明该气田天然气来源具有多样性.利用R/Ra与CO2/3He和R/Ra与CH4/3He关系对庆深气田天然气成因类型进行识别, 认为该气田烷烃气中甲烷有部分为无机成因, 重烃气则为有机成因.该地区高地温梯度导致有机成因重烃气碳同位素组成发生倒转, 而CH4与C2H6碳同位素组成倒转主要与重碳同位素的无机甲烷混入有关.Abstract: According to measurement of carbon isotopes of gaseous alkanes thermally cracked from the hydrocarbon sources and oil under closed system pyrolysis, the results suggest that the reversal occurrence for carbon isotopes of heavy gaseous alkanses (δ13C2 > δ13C3 > δ13C4) would be caused by single thermal dynamics, whereas the reversal trends of δ13C1 and δ13C2 (δ13C1 > δ13C2) could not be observed.The natural gases in the Qingshen gas field are characterized by the less negative δ13C1 values, reversal series of carbon isotopes for gaseous alkanes and high R/Ra values (R/Ra > 1.0), indicating natural gases should have stemmed from multi-sources.Based on the correlation of R/Ra and CO2/3He, R/Ra and CH4/3He, the genesis of natural gases from the Qingshen gas field were identified.The hydrocarbon gases in the Qingshen gas field are a mixture of alkanes, in which the heavy gaseous alkanes were derived from the thermal decomposition of organic matters due to the high geothermal gradient, whereas mixing of inorganic methane into organic gas caused the reversal of the carbon isotopic trend of CH4 and C2H6.
-
Key words:
- Qingshen gas field /
- pyrolysis experiment /
- carbon isotope /
- inorganic gas /
- organic gas
-
表 1 松辽盆地徐家围子烃源岩与原油热模拟实验烷烃气碳同位素组成
Table 1. Carbon isotope compositions of alkane gases from possible source rocks and crude oils in the closed system pyrolysis
-
[1] Ballentine, C. J., Schoell, M., Coleman, D., et al., 2001.300 Myr-old magmatic CO2 in natural gas reservoirs of the West Texas Permian basin. Nature, 409 (6818): 327-331. doi: 10.1038/35053046 [2] Basu, S., Stuart, F. M., Klemm, V., et al., 2006. Helium isotopes in ferromanganese crusts fromthe central PacificOcean. Geochimica et Cosmochimica Acta, 70 (15): 3996-4006. doi: 10.1016/j.gca.2006.05.015 [3] Berndt, M. E., Allen, D. E., Seyfried, W. E., 1996. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bar. Geology, 24 (4): 351-354. doi: 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2 [4] Cai, C., Worden, R. H., Bottrell, S. H., et al., 2003. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan basin, China. Chemical Geology, 202 (1-2): 39-57. doi: 10.1016/S0009-2541(03)00209-2 [5] Chung, H. M., Gorml, J. R., Squires, R. M., 1988. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chemical Geology, 71 (1-3): 97-104. doi: 10.1016/0009-2541(88)90108-8 [6] Craig, H., Lupton, J. E., 1976. Primordial neon, helium and hydrogen in oceanic basalts. Earth and Planetary Science Letters, 31 (3): 369-385. doi: 10.1016/0012-821X(76)90118-7 [7] Cramer, B., Krooss, B. M., Littke, R., 1998. Modelling isotope fractionation during primary cracking of naturalgas: A reaction kinetic approach. Chemical Geology, 149 (3-4): 235-250. doi: 10.1016/S0009-2541(98)00042-4 [8] Dai, J. X., Li, J., Luo, X., et al., 2005b. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos basin, China. Organic Geochemistry, 36 (12): 1617-1635. doi: 10.1016/j.orggeochem.2005.08.017 [9] Dai, J. X., Yang, S., Chen, H., et al., 2005a. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Organic Geochemistry, 36 (12): 1664-1688. doi: 10.1016/j.orggeochem.2005.08.007 [10] Dai, J. X., Xia, X., Qin, S., et al., 2004. Origins of partially reversed alkane δ13 C values for biogenic gases in China. Organic Geochemistry, 35 (4): 405-411. doi: 10.1016/j.orggeochem.2004.01.006 [11] Dai, J. X., Yang, C., Hu, G. Y., et al., 2008. Coal-formed gas plays a significant role in the natural gas industry of China. Natural Gas Geoscience, 19 (6): 733-740 (inChinese with English abstract). [12] Des Marais, D. J., Donchin, J. H., Nehring, N. L., et al., 1981. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature, 292 (5826): 826-828. doi: 10.1038/292826a0 [13] Du, J., Jin, Z., Xie, H., et al., 2003. Stable carbon isotope compositions of gaseous hydrocarbons produced from high pressure and high temperature pyrolysis of lignite. Organic Geochemistry, 34 (1): 97-104. doi: 10.1016/S0146-6380(02)00158-4 [14] Fu, G., Lu, Y. F., Yu, D., 2007. Major factors controlling formation of large and intermediate gas fields with high gas accumulation efficiency in different types of basinsin China. Earth Science—Journal of China University of Geosciences, 32 (1): 82-88 (in Chinese with English abstract). [15] Fu, G., Wang, Y. G., 2008. Time and space matching relation among accumulation essential factors of gas reservoirs in volcanic rock and its controlling to gas accumulation: A case study of deep strata of Xujiaweizi region. Earth Science—Journal of China University of Geosciences33 (3): 342-348 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.045 [16] Feng, Z. H., Chi, Y. L., Du, H. W., et al., 2002. Carbon isotopic composition and yield of gaseous hydrocarbon by oil hydrous pyrolysis in rock medium. Acta Sedimentologica Sinica, 20 (3): 505-509 (in Chinese with English abstract). [17] Fuex, A. N., 1977. The use of stable carbon isotopes in hydrocarbon exploration. Journal of Geochemical Exploration, 7 (2): 155-188. [18] Galimov, E. M., 1988. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology, 71 (1-3): 77-95. doi: 10.1016/0009-2541(88)90107-6 [19] Hiyagon, H., Kennedy, B. M., 1992. Noble gases in CH4rich gas fields, Alberta, Canada. Geochimica et Cosmochimica Acta, 56 (4): 1569-1589. doi: 10.1016/0016-7037(92)90226-9 [20] Hopp, J., Trieloff, M., 2005. Refining the noble gas record of the Réunion mantle plume source: Implications on mantle geochemistry. Earth and Planetary Science Letters, 240 (3-4): 573-588. doi: 10.1016/j.epsl.2005.09.036 [21] Horita, J., Berndt, M. E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285 (5430): 1055-1057. doi: 10.1126/science.285.5430.1055 [22] James, A. T., 1990. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. AAPG Bulletin, 74 (9): 1441-1458. [23] Janecky, D. R., Seyfried, W. E., 1986. Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta, 50 (7): 1357-1378. doi: 10.1016/0016-7037(86)90311-X [24] Lancet, M. S., Anders, E., 1970. Carbonisotope fractionation in the Fischer-Tropsch synthesis and in methane. Science, 170 (3961): 980-982. doi: 10.1126/science.170.3961.980 [25] Liu, Q., Dai, J., Zhang, T., et al., 2007. Genetic types of natural gas and their distribution in Tarim basin, NW China. Journal of Nature Science and Sustainable Technology, 1 (4): 603-620. [26] Oxburgh, E. R., O'Nions, R. K., Hill, R. I., 1986. Helium isotopes in sedimentary basin. Nature, 324 (6089): 632-635. [27] Poreda, R., Craig, H., 1989. Helium isotope ratios in circum Pacific volcainc arcs. Nature, 338 (6215): 473-478. doi: 10.1038/338473a0 [28] Poreda, R. J., Jenden, P. D., Kaplan, I. R., et al., 1986. Mantle helium in Sacramento basin natural gas wells. Geochimica et Cosmochimica Acta, 50 (12): 2847-2853. doi: 10.1016/0016-7037(86)90231-0 [29] Prinzhofer, A., Battani, A., 2003. Gas isotopes tracing: An important tool for hydrocarbons exploration. Oil & Gas Science and Technology, 58 (2): 299-311. [30] Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, 44 (5): 649-661. doi: 10.1016/0016-7037(80)90155-6 [31] Schoell, M., 1983. Genetic characterization of natural gases. AAPG Bulletin, 67 (12): 2225-2238. [32] Sherwood, L. B., Ballentine, C. J., O'Nions, R. K., 1997. The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures. Geochimica et Cosmochimica Acta, 62 (11): 2295-2307. [33] Sherwood, L, B., Westgate, T. D., Ward, J. A., et al., 2002. Abiogenic formation of alkanes in the earth's crust as a minor source for global hydrocarbon reservoirs. Nature, 416 (6880): 522-524. doi: 10.1038/416522a [34] Tang, Y., Huang, Y., Ellis, G. S., et al., 2005. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil. Geochimica et Cosmochimica Acta, 69 (18): 4505-4520. doi: 10.1016/j.gca.2004.12.026 [35] Wakita, H., Sano, Y., 1983. 3He/4He ratios in CH4-rich natural gases suggest magmatic origin. Nature, 305 (5937): 792-794. doi: 10.1038/305792a0 [36] Wang, X., Li, C., Chen, J., et al., 1997. On abiogenic natural gas. Chinese Science Bulletin, 42 (16): 1327-1336. doi: 10.1007/BF02882859 [37] Welhan, J. A., 1988. Origins of methane in hydrothermal system. Chemical Geology, 71 (1-3): 183-198. doi: 10.1016/0009-2541(88)90114-3 [38] Xu, S., Nakai, S. I., Wakita H., et al., 1995b. Mantle-derived noble gases in natural gases from Songliao basin, China. Geochimica et Cosmochimica Acta, 59 (22): 4675-4683. doi: 10.1016/0016-7037(95)00301-0 [39] Xu, S., Nakai, S., Wakita, H., et al., 1995a. Helium isotope compositions in sedimentary basins in China. Applied Geochemistry, 10 (6): 643-656. doi: 10.1016/0883-2927(95)00033-X [40] Xu, Y. C., Shen, P., 1996. A study of natural gas origins in China. AAPG Bulletin, 80 (10): 1604-1614. [41] Xu, Y. C., Liu, W., Shen, P., et al., 2006. Carbon and hydrogen isotopic characteristics of natural gases from the Luliang and Baoshan basins in Yunnan Province, China. Science in China (Ser. D), 49 (9): 938-946. doi: 10.1007/s11430-006-0938-8 [42] Xu, Y. C., Shen, P., Liu, W. H., et al., 1998. Noble gas geochemistry of natural gases. Science Press, Beijing, 231 (in Chinese). [43] Yang, C., Luo, X., Li, J., et al., 2008. Geochemical characteristics of pyrolysis gas from epimetamorphic rocks in the northern basement of Songliao basin, NE China. Science in China (Ser. D), 51 (Suppl. Ⅰ): 140-147. [44] Zhou, Q., Feng, Z., Men, G., 2008. Present geotemperature and its suggestion to natural gas generation in Xujiaweizi fault-depression of the northern Songliao basin. Science in China (Ser. D), 51 (Suppl. Ⅰ): 207-220. [45] 戴金星, 杨春, 胡国艺, 等, 2008. 煤成气是中国天然气工业的主角. 天然气地球科学, 19 (6): 733-740. doi: 10.11764/j.issn.1672-1926.2008.06.733 [46] 付广, 吕延防, 于丹, 2007. 我国不同类型盆地高效大中型气田形成的主控因素. 地球科学——中国地质大学学报, 32 (1): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701011.htm [47] 付广, 王有功, 2008. 火山岩天然气成藏要素时空匹配及对成藏的控制作用: 以徐家围子地区深层为例. 地球科学——中国地质大学学报, 33 (3): 342-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803008.htm [48] 冯子辉, 迟元林, 杜洪文, 等, 2002. 原油在储层介质中的加水裂解生气模拟实验. 沉积学报, 20 (3): 505-509. doi: 10.3969/j.issn.1000-0550.2002.03.023 [49] 徐永昌, 沈平, 刘文汇, 等, 1998. 天然气中稀有气体地球化学. 北京: 科学出版社, 231.