Mechanism of Carbonate Cementation and Secondary Dissolution Porosity Formation in Deep-Burial Sandstones near the Top Overpressured Surface in Central Part of Junggar Basin
-
摘要: 准噶尔盆地腹部深层超压顶面附近(现今埋深4400~6200m, 温度105~145℃) 砂岩中广泛出现的碳酸盐胶结作用和次生溶蚀孔隙与超压流体活动关系密切.由于超压封闭和释放引起其顶面附近砂岩中的孔隙压力和水化学环境的周期性变化可导致碳酸盐沉淀和易溶矿物溶解过程交替出现.根据腹部地区超压顶面附近深埋砂岩成岩作用、碳酸盐胶结物含量、储集物性、碳酸盐胶结物碳、氧同位素和烃源岩热演化模拟等资料的综合研究表明: 含铁碳酸盐胶结物是主要的胶结成分, 长石类成分的次生溶蚀孔隙是主要的储集空间类型, 纵向上深层砂岩碳酸盐胶结物出现15%~30%含量的地层厚度范围约在邻近超压顶面之下100m至之上大于450m, 碳酸盐胶结物出现大于25%含量高值带分布在靠近超压顶面向上的250~300m的地层厚度范围, 超压顶面附近砂岩中碳酸盐胶结物含量高值的深度范围也是次生溶蚀孔隙(孔隙度10%~20%) 发育带的范围; 因晚白垩世以来深部侏罗纪煤系有机质生烃增压作用, 导致在超压顶面附近砂岩晚成岩作用阶段深部富含碳酸盐的超压流体频繁活动, 所形成的碳酸盐胶结物受到了明显的与深部生烃增压有关的超压热流体和有机脱羧作用的影响; 超压流体多次通过超压顶面排放, 使得超压顶面附近砂岩遭受了多期酸性流体溶蚀作用过程, 形成了次生溶蚀孔隙发育带.Abstract: The carbonate cementation and secondary dissolution porosity in the deep-burial sandstones near the top overpressured surface (present-day depths: 4 400-6 200 m and temperatures: 105-145 ℃) in the central part of Junggar Basin are intimately related to the overpressured fluid activities.Periodic decreases of pore pressures and changes of formation hydrochemical conditions as sealing and releasing of overpressures along the top overpressured surface can result the processes of carbonate precipitation and aluminosilicate dissolving in the sandstones.Based on the data of diagenesis, carbonate cement content, sandstone property, carbon and oxygen isotope of carbonate cement, thermal maturity modeling of source rocks and so on, integrated studies indicate as fellows: The ferroan carbonate cements are the dominated cements formed in the late diagenesis stage, and the feldspar-related secondary dissolved pores are the most important pore types in the deep-burial sandstone reservoirs.The thickness scopes are more than 550 m, occurring 100 m below the top overpressured surface and over 450 m above the surface, while the carbonate cement contents reach or exceed the values of 15% to 30%.The thickness intervals are 250-300 m above the top overpressured surface while the carbonate cement contents reach or exceed the values of 25%.The depth intervals of up to 10%-20% secondary dissolving porosity are concomitant with the depth ranges of relative high carbonate cement contents.Since the late Cretaceous, the carbonate-riched fluid flows have been produced frequently as the development of hydrocarbon generation pressures from the deep Jurassic coal-bearing strata, and the carbonate cements have been influenced evidently by the overpressured and thermal fluids, implying that the late-stage ferroan calcite carbon is partly originated from the organic-matter thermal degradation.The secondary porosity zones in the deep-burial sandstones near the top overpressured surface have been formed during the processes of acid-fluid expulsion and migration due to upward releases of overpressures along the diagenetic barrier associated with the top carbonate mineralization zones.
-
图 2 准噶尔盆地腹部砂岩碳酸盐胶结成岩作用显微照片
a.Y1井, 5 877.34 m, J2t, 孔隙全貌, 主要发育粒间溶蚀孔隙, 铸体片, 10×4 (-); b.Y1井, 5 882 m, J2t, 长石溶蚀残余, 铸体片, 10×20 (-); c.Y1井, 5 876 m, J2t, 连晶方解石占据孔隙和喉道, 10×10 (+); d.Y1井, 5 877.8 m, J2t, 方解石溶孔, 10×10 (-); e.ZHG3井, 5 109.56 m, J1s, 多期含铁方解石胶结物, 阴极发光片, ×40;f.Y2井, 5 966 m, J2t, 溶蚀孔隙为含铁方解石充填, 铁白云石交代含铁方解石, 孔隙周缘为沥青, 铸体片, 10×4 (-)
Fig. 2. Diagenesis micrograph of carbonate cements in sandstone in central part of Junggar basin
-
[1] Bjφrlykke, K., 1994. Fluid-flow processes and diagenesis in sedimentary basins. In: Parnell, L., ed., Geofluids: Ori-gin, migration and evolution of fluids in sedimentary ba-sins. Geological Society Special Publication, 78: 127-140. [2] Cao, J., Hu, W. X., Yao, S. P., et al., 2007. Mn content of reservoir calcite cement: A novel inorganic geotracer of secondary petroleum migration in the tectonically com-plex Junggar basin (NW China). Sicence in China (Ser. D), 37 (10): 1358-1365 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG200712005 [3] Cheng, K. M., Zhang, C. F., 1994. Research of coal-derived hydrocarbon from the Turpan-Hami basin. Sicence in China (Ser. B), 24 (11): 1216-1222 (in Chinese). [4] Curtis, C. D., 1978. Possible links between sandstone diagen-esis and depth-related geochemical reactions ouurring in enclosing mudstones. Journal of the Geological Socie-ty, 135 (1): 107-117. doi: 10.1144/gsjgs.135.1.0107 [5] Hao, F., 2005. Kinetics of hydrocarbon generation and mech-anism of petroleum accumulation in overpressured ba-sins. Science Press, Beijing, 3-36, 136-268 (in Chi-nese). [6] He, S., He, Z. L., Yang, Z., et al., 2009. Studies of charac-teristics, well-log responses and mechanisms of abnor-mally high pressures within the Jurassic Formation in the central part of Junggar Basin. Earth science—Jour-nal of Chinese University of Geosciences, 34 (3): 457-470 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.051 [7] Hunt, J. M., 1990. Generation and migration of petroleum from abnormally pressured fluid compart ments. AAPG Bulletin, 74 (1): 1-12. [8] Jansa, L. F., Noguera U. V. H., 1990. Geology and diagenet-ic history of overpressured sandstone reservoirs, venture gas field, offshore Nova Scotia, Canada. AAPG Bulle-tin, 74 (10): 1640-1658. doi: 10.1306/703c9f4b-1707-11d7-8645000102c1865d [9] Jiao, Y. Q., Wu, L. Q., Lu, Y. C., et al., 2008. Evolution of the Chepaizi-Mosuowan Paleo-Uplift, Junggar Basin, China: Evidence from diagenesis of late Jurassic red beds. Earth science—Journal of Chinese University of Geosciences, 33 (2): 219-226 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.029 [10] Jonk, R., Hurst, A., Duranti, D., et al., 2005. Origin and timing of sand injection, petroleum migration, and dia-genesis in Tertiary reservoirs, South Viking Graben North Sea. AAPG Bulletin, 89 (3): 329-357. doi: 10.1306/10260404020 [11] Li, M. C., 1995. Hot fluid activity in crust and hydrocarbon migration. Earth Science Frontiers, 2 (3-4): 155-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY504.004.htm [12] Li, P. P., Zou, H. Y., Hao, F., 2006. Formation mechanism and effect on petroleum accumulation of the weathering crust, top of Jurassic, in the hinterland of Junggar ba-sin. Acta Sedimentologica Sinica, 24 (6): 889-896 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200606015.htm [13] Liu, D. G., 1998. Overpressure origin and hydrocarbon pool forming mode of Maqiao uplift in Junggar basin. Petro-leum Exploration and Development, 25 (1): 21-24 (in Chinese with English abstract). http://www.cqvip.com/qk/90664X/19982501/2998889.html [14] Lynch, F. L., 1996. Mineral/water interaction, fluid flow, and Frio sandstone diagenesis: Evidence from the rocks. AAPG Bulletin, 80 (4): 486-504. http://archives.datapages.com/data/meta/bulletns/1997/09sep/1534/Images/97_1534_firstpage.pdf [15] Nie, F. J., Jiang, M. Z., Li, S. T., et al., 2005. The responses of sandstone to hot fluid flowand their identified mark-ers—Acase study from the western part of the Pearl River Mouth basin. Earth Science Frontiers, 12 (4): 581-591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200504039.htm [16] Shou, J. F., Zhang, H. L., Si, C. S., et al., 2005. Sandstone diagenesis dynamics. Petroleum Industry Press, Beijing, 73-75 (in Chinese). [17] Surdam, R. C., Boese, S. W., Crossey, L. J., et al., 1984. The chemistry of secondary porosity (in clastic diagenesis). AAPG Memoir, 37: 127-149. http://www.researchgate.net/publication/247807955_The_Chemistry_of_Secondary_Porosity/download [18] Surdam, R. C., Crossey, L. J., Hagen, E. S., et al., 1989. Or-ganic-inorganic and sandstone diagenesis. AAPG Bulle-tin, 73 (1): 1-23. [19] Wang, D. R., 2000. Oil-gas stable isotopic geochemistry. Pe-troleum Industry Press, Beijing, 4-20 (in Chinese). [20] Wang, F. R., He, S., Hong, T. Y., et al., 2006. Dominant factors affecting the reservoir properties of deeply bur-ied bed in the center of Junggar basin. Xinjiang Geolo-gy, 24 (4): 423-428 (in Chinese with English ab-stract). http://www.researchgate.net/publication/313563416_Dominant_factors_affecting_the_reservoir_properties_of_deeply_buried_bed_in_the_center_of_Junggar_basin [21] Wang, F. R., He, S., He, Z. L., et al., 2009. Characteristics and genetic mechanism of carbonate cement in sand-stone reservoirs of Yongjin Area in Central Junggar Ba-sin. Acta Petrologica et Mineralogica, 28 (2): 169-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200902009.htm [22] Wang, Y., Zhong, J. H., Chen, H., et al., 2006. Vertical dis-tribution and genesis of the secondary pore in deep for-mation of Paleogene at Dongpu Sag. Petroleum Explo-ration and Development, 33 (5): 576-580 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200605012.htm [23] Wang, Z. L., Zhu, Y. S., Chen, H. L., et al., 2000. Physical and chemical properities of Jurassic fluid in the hinter-land of Junggar basin and its hydrodynamic signifi-cance. Geochimica, 29 (6): 542-548 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200006004.htm [24] Wang, Z. Z., Wu, S. H., Xiong, Q. H., et al., 2003. Charac-teristics of percolation fields in oillgas fields. Petroleum Industry Press, Beijing (in Chinese). [25] Weedman, S. D., Brantley, S. L., Shiraki, R., et al., 1996. Di-agenesis, compaction, and fluid chemistry modeling of a sandstone near a pressure seal: Lower Tuscaloosa For-mation, Gulf Coast. AAPG Bulletin, 80 (7): 1045-1064. doi: 10.1306/64ed8c8c-1724-11d7-8645000102c1865d [26] Wilkinson, M., Haszeldine, R. S., Fallick, A. E., et al., 2006. Hydrocarbon filling and leakage history of a deep geopressured sandstone, Ful mar Formation, United Kingdom North Sea. AAPG Bulletin, 90 (12): 1945-1961. doi: 10.1306/06270605178 [27] Wu, H. Z., Meng, X. L., Yang, J. F., et al., 2006. Formation conditions and prospecting technologies for subtle res-ervoirs in the Che-Mo palaeohigh of central Junggar ba-sin. Oil & Gas Geology, 27 (6): 779-803 (in Chinesewith English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYYT200606009.htm [28] Xie, X. M., Cao, J., Hu, W. X., et al., 2007. Origin and ap-plication of GOI data of oil inclusions in structurally complex basins: A case study in the Mosuowan area of the Junggar basin (NWChina). Acta Geologica Sinica, 81 (6): 834-842 (in Chinese with English abstract). http://www.researchgate.net/publication/289398296_Origin_and_application_of_GOI_data_of_oil_inclusions_in_structurally_complex_basins_A_case_study_in_the_Mosuowan_area_of_the_Junggar_Basin_NW_China [29] Xie, X. N., Li, S. T., Liu, X. F., et al., 2006. Basin fluid dy-namics in abnormally pressured environments. China University of Geosciences Press, Wuhan, 1-178 (in Chinese). [30] Xie, Y. F., Li, H. Q., Sun, Z. C., et al., 2006. Discovery of a weathering crust between Jurassic and Cretaceous and its stratigraphic significance in the Shinan area of the Junggar basin. Geological Review, 52 (1): 137-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200601022.htm [31] Xu, T. T., Wang, X. X., Zhang, Y. Y., et al., 2003. Clayminerals in petroliferous basin in China. PetroleumIn-dustry Press, Beijing, 422-456 (in Chinese). [32] Yang, Z., He, S., He, Z. L., et al., 2008. Distribution of overpressure stratum and its relationship with hydro-carbon accumulation in the central part of Junggar ba-sin. Acta Petrolei Sinica, 29 (2): 199-205 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200802011.htm [33] Yu, B. S., Lai, X. Y., 2006a. Dissolution of calcite cement and its contribution to the secondary pores of reservoir in the Kela2gas field in the Tarim basin. Journal of Mineral and Petrololgy, 26 (2): 74-79 (in Chinese with English abstract). http://www.researchgate.net/publication/286013978_Dissolution_of_calcite_cement_and_its_contribution_to_the_secondary_pores_of_reservoir_in_the_Kela_2_gas_field_in_the_Tarim_Basin [34] Yu, B. S., Lai, X. Y., 2006b. Carbonic acid systemof ground-water and the solubility of calcite during diagenesis. Ac-ta Sedimentologica Sinica, 24 (5): 627-635 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200605001.htm [35] Zha, M., Zhang, W. H., Qu, J. X., et al., 2000. The charac-ter and origin of overpressure and its explorational sig-nificance in Junggar basin. Petroleum Exploration and Development, 27 (2): 31-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200002010.htm [36] Zhang, Y. J., 2002. The geochemical characteristics of water rock interaction products in Junggar basin. Xinjiang Petroleum Geology, 23 (6): 482-484 (in Chinese with English abstract). [37] Zhang, Z. H., Chang, X. C., Zeng, J. H., et al., 1998. Re-search on waterrock interaction and its application on petroleumgeology. Geological Science and Technology Information, 17 (3): 69-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ803.012.htm [38] Zheng, J. M., Ying, F. X., 1997. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bear-ing strata (acid water medium). Acta Petrolei Sinica, 18 (4): 19-24 (in Chinese with English abstract). http://www.cqvip.com/qk/95667x/1997004/2758265.html [39] Zhong, D. K., Zhu, X. M., Zhang, Z. H., et al., 2003. Origin of secondary porosity of Paleogene sandstone in the Dongying Sag. Petroleum Exploration and Develop-ment, 30 (6): 51-53 (in Chinese with English ab-stract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK200306015.htm [40] Zhong, X. C., Zhao, C. B., Yang, S. Z., et al., 2003. Jurassic systeminthe north of China Palaeoenoironment and oil-gas sonrce. Petroleum Industry Press, Beijing (in Chi-nese). [41] 曹剑, 胡文瑄, 姚素平, 等, 2007. 准噶尔盆地示踪石油运移的无机地球化学新指标研究. 中国科学(D辑), 37 (10): 1358-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200710010.htm [42] 程克明, 张朝富, 1994. 吐鲁番-哈密盆地煤成油研究. 中国科学(B辑), 24 (11): 1216-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199411013.htm [43] 郝芳, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社, 3-36, 136-268. [44] 何生, 何治亮, 杨智, 等, 2009. 准噶尔盆地腹部地区侏罗系异常高压特征及测井响应与成因研究. 地球科学——中国地质大学学报, 34 (3): 457-470. [45] 焦养泉, 吴立群, 陆永潮, 等, 2008. 准噶尔盆地腹部侏罗系顶部红层成岩作用过程中蕴藏的车莫古隆起演化信息. 地球科学——中国地质大学学报, 33 (2): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200802010.htm [46] 李明诚, 1995. 地壳中的热流体活动与油气运移. 地学前缘, 2 (3-4): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY504.004.htm [47] 李平平, 邹华耀, 郝芳, 2006. 准噶尔盆地腹部侏罗系顶部风化壳的发育机制及其油气成藏效应. 沉积学报, 24 (6): 889-896. doi: 10.3969/j.issn.1000-0550.2006.06.016 [48] 刘得光, 1998. 准噶尔盆地马桥凸起异常高压成因及油气成藏模式. 石油勘探与开发, 25 (1): 21-24. doi: 10.3321/j.issn:1000-0747.1998.01.006 [49] 聂逢君, 姜美珠, 李思田, 等, 2005. 砂岩对热流通作用的响应及识别标记—珠江口盆地西部为例. 地学前缘, 12 (4): 581-591. doi: 10.3321/j.issn:1005-2321.2005.04.029 [50] 寿建峰, 张惠良, 斯春松, 等, 2005. 砂岩动力成岩作用. 北京: 石油工业出版社, 73-75. [51] 王大锐, 2000. 油气稳定同位素地球化学. 北京: 石油工业出版社, 4-20. [52] 王芙蓉, 何生, 洪太元, 等, 2006. 准噶尔盆地腹部地区深埋储层物性特征及影响因素. 新疆地质, 24 (4): 423-428. doi: 10.3969/j.issn.1000-8845.2006.04.019 [53] 王勇, 钟建华, 陈昊, 等, 2006. 东濮凹陷古近系深层次生孔隙垂向分布特征及成因. 石油勘探与开发, 33 (5): 576-580. doi: 10.3321/j.issn:1000-0747.2006.05.012 [54] 王震亮, 朱玉双, 陈荷立, 等, 2000. 准噶尔盆地腹部侏罗系流体物理化学特征及其水动力学意义. 地球化学, 29 (6): 542-548. doi: 10.3321/j.issn:0379-1726.2000.06.005 [55] 王志章, 吴胜和, 熊琦华, 等, 2003. 油气田渗流场特征. 北京: 石油工业出版社. [56] 武恒志, 孟闲龙, 杨江峰, 等, 2006. 准噶尔盆地腹部车-莫古隆起区隐蔽油气藏形成条件与勘探技术. 石油与天然气地质, 27 (6): 779-803. doi: 10.3321/j.issn:0253-9985.2006.06.008 [57] 谢小敏, 曹剑, 胡文瑄, 等, 2007. 叠合盆地储层油气包裹体GOI成因与应用探讨—以准噶尔盆地莫索湾地区为例. 地质学报, 81 (6): 834-842. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706012.htm [58] 解习农, 李思田, 刘晓峰, 等, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社, 1-178. [59] 谢寅符, 李洪奇, 孙中春, 等, 2006. 准噶尔盆地石南地区侏罗系-白垩系间风化壳的发现及其地层学意义. 地质论评, 52 (1): 137-144. doi: 10.3321/j.issn:0371-5736.2006.01.018 [60] 徐同台, 王行信, 张有瑜, 等, 2003. 中国含油气盆地粘土矿物. 北京: 石油工业出版社, 422-456. [61] 杨智, 何生, 何治亮, 等, 2008. 准噶尔盆地腹部超压层分布与油气成藏. 石油学报, 29 (2): 199-205. doi: 10.3321/j.issn:0253-2697.2008.02.008 [62] 于炳松, 赖兴运, 2006a. 克拉2气田储集岩中方解石胶结物的溶解及其对次生孔隙的贡献. 矿物岩石, 26 (2): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200602011.htm [63] 于炳松, 赖兴运, 2006b. 成岩作用中的地下水碳酸体系与方解石溶解度. 沉积学报, 24 (5): 627-635. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200605001.htm [64] 查明, 张卫海, 曲江秀, 等, 2000. 准噶尔盆地异常高压特征、成因及勘探意义. 石油勘探与开发, 27 (2): 31-35. doi: 10.3321/j.issn:1000-0747.2000.02.009 [65] 张义杰, 2002. 准噶尔盆地水岩反应产物的地球化学特征. 新疆石油地质, 23 (6): 482-484. doi: 10.3969/j.issn.1001-3873.2002.06.009 [66] 张枝焕, 常象春, 曾溅辉, 等, 1998. 水-岩相互作用研究及其在石油地质中的应用. 地质科技情报, 17 (3): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ803.012.htm [67] 郑浚茂, 应凤祥, 1997. 煤系地层(酸性水介质) 的砂岩储层特征及成岩模式. 石油学报, 18 (4): 19-24. doi: 10.3321/j.issn:0253-2697.1997.04.004 [68] 钟大康, 朱筱敏, 张枝焕, 等, 2003. 东营凹陷古近系砂岩次生孔隙成因与纵向分布规律. 石油勘探与开发, 30 (6): 51-53. doi: 10.3321/j.issn:1000-0747.2003.06.015 [69] 钟筱春, 赵传本, 杨时中, 等, 2003. 中国北方侏罗系(Ⅱ) 古环境与油气. 北京: 石油工业出版社.