Quantitative Regulation of Resource Growth in the Process of Mineralization Derived from Dashui Gold Deposit in Maqu County, Gansu
-
摘要: 大水金矿床是著名的超大型矿床.在借鉴前人矿床地质研究成果的基础上, 通过对矿体规模数据的多重分形特征及吨-品位关系研究, 揭示了成矿过程中资源量生长的数量规律.矿体长度服从简单分形分布, 矿床资源量的吨-品位关系能用指数函数或直线方程更好地拟合, 矿床与矿体资源量双对数图、吨-品位的双对数图的多重分形特征表明: 在分形构造成矿空间中, 特定成矿阶段的矿床资源量的生长方式是自组织非线性增殖过程, 与自组织有关的随机性使吨-品位关系趋于指数关系; 在整个成矿过程中, 矿床资源量的生长方式是各阶段矿体资源量的线性叠加.进一步根据熵最大化原理及效用理论导出了与统计结果吻合的矿床吨-品位方程, 并得到柴家庄金矿矿体地质数据的验证.Abstract: Dashui gold deposit boasts its superlarge size.Based on the previous geological research, the quantitative regulation of resource growth has been revealed by studying the multifractals and grade-tonnage relation from geological data of ore-bodies.The ore-body lengths are subjected to single fractal distribution, while tonnages vs grades relation can be better fitted to the exponential function or linear function.With the multifractal characteristics of double-logarithmic chart of tonnages vs grades and tonnage vs orebody resources, all the above show that, in the fractal metallogenic structure space, the growth of mineral resources in specific metallogenic phase was a nonlinear proliferation process related to self-organized optimization and its random makes the relation of tonnage vs grades tend to be exponential function, and the whole metallogenic process was the linear addition of multi-phase ore-body resources.Furthermore, the tonnage vs grade equations consistent with statistics were found by the maximal entropy and the utility theory and verified by the orebody geological data of Chaijiazhuang gold deposit.
-
表 1 玛曲县大水金矿矿体规模数据
Table 1. The sizes of Dashui gold ore bodies in Maqu County, Gansu Province
表 2 大水金矿矿体地质因素特征组合码与矿体资源量、品位的关系
Table 2. The relation of the association of metallogenic factors in Dashui gold deposit with sizes and grades of gold orebodies
-
[1] Batty, M., 2000. Less is more, more is different: Complexity, morphology, cities, and emergence. Environment andPlanning B: Planningand Design, 27 (2): 167-168. doi: 10.1068/b2702ed [2] Chen, Y. G., Liu, J. S., 2001. The maxi mum entropy princi-ple in fractal model of urban hierarchy. Progress inNatural Science, 11 (11): 1170-1174 (in Chinese). [3] Chen, Y. G., Liu, J. S., 2006. Power spectra analyses of spa-tial auto-correlations of urban density: An application tothe Hangzhou metropolis. Advances in Earth Sciences, 21 (1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200601000.htm [4] Chen, Y. G., Liu, J. S., Fang, Y. G., 2002. Utility-maxmiza-tion, logit transformation and the basic mathematicalmodels for analytical urban geography. Scientia Geo-graphica Sinica, 22 (5): 581-586 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200205011.htm [5] Chen, Y. J., Zhang, J., Zhang, F. X., et al., 2004. Carlin and calin-like gold deposits in West Qinling Mountains and their met-allogenic ti me, tectonic setting and model. Geological Re-view, 50 (2): 134-152 (in Chinese with English abstract). [6] Duan, Y. M., Yu, X. H., Wang, H. L., 2006. Ore-forminggeochemistry and genesis of Chaijiazhuang gold deposit, Gansu. Geology and Prospecting, 42 (1): 21-25 (inChinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200601004.htm [7] Gao, L., 1998. Dashui type gold deposit: A new kind of golddeposit in China. Mineral Deposits, 17 (Suppl. ): 389-392 (in Chinese with English abstract). [8] Liu, X. C., Wang, P. A., Dong, F. X., et al., 2003. Character-istics, crystallization conditions and emplacement depthsof quartz monzonites from Dashui area, Gansu Province. Journal of Geomechanics, 9 (1): 62-69 (in Chinesewith English abstract). http://search.cnki.net/down/default.aspx?filename=DZLX200301008&dbcode=CJFD&year=2003&dflag=pdfdown [9] Luo, J. M., Hou, Y. S., Zhang, X. H., et al., 2006. Reservepredictive model and resource potential appraisal of golddeposits in Gansu Province, China. Mineral deposits, 25 (1): 53-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200601006.htm [10] Mao, J., Qiu, Y. M., Richard, J. G., et al., 2002. Geology, distribution, and classification of gold deposits in thewestern Qinling belt, Central China. Mineralium Depos-ita, 37: 352-357. doi: 10.1007/s00126-001-0249-0 [11] Mei, Y. S., Wang, D. P., Huang, H., et al., 1995. An introduc-tion to the isospatial metallogenesis. Geologyand Prospec-ting, 31 (5): 3-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT505.001.htm [12] Wang, A. J., Gao, L., Yan, S. H., et al., 1998. Genesis ofDashui type gold deposits and discussion of their distri-bution law. Mineral Deposits, 17 (Suppl. ): 267-270 (in Chinese with English abstract). [13] Wei, M., Zhao, P. D., Liu, H. G., et al., 2001. Grade-tonnagemodel of original gold deposits in China. EarthScience—Journal of China University of Geosciences, 26 (2): 176-179 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200102015.htm [14] Yan, S. H., Wang, A. J., Gao, L., et al., 2000a. Geological characteristics and genesis of the Dashui type gold de-posits. Mineral Deposits, 19 (2): 126-137 (in Chinesewith English abstract). [15] Yan, S. H., Wang, A. J., Gao, L., et al., 2000b. REE geo-chemistry and i mplications of stable isotopes in Dashuitype gold deposits. Mineral deposits, 19 (1): 37-45 (inChinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200001005.htm [16] Yang, J. G., 2001. Management of Chinese mineral resouces reserves connecting with the international standard. Ge-ology and Prospecting, 37 (2): 9-11 (in Chinese withEnglish abstract). [17] Yu, C. W., 2003. Complexity of geosystem: Basic issues ofgeological sciences (Ⅱ). Earth Science—Journal ofChina University of Geosciences, 28 (1): 31-39 (inChinese with English abstract). http://www.researchgate.net/publication/280903112_Complexity_of_geosystem_Basic_issues_of_geological_science [18] Yu, C. W., 2007. Complexity of geosystem. Geological Pub-lishing House, Beijing (in Chinese). [19] Zhao, P. D., Chen, Y. Q., Liu, J. P., et al., 1999. Theory andpractice of geoanomaly in mineral exploration. ChinaUniversity of Geosciences Press, Wuhan (in Chinese). [20] 陈彦光, 刘继生, 2001. 城市等级体系分形模型中的最大熵原理. 自然科学进展, 11 (11): 1170-1174. doi: 10.3321/j.issn:1002-008X.2001.11.007 [21] 陈彦光, 刘继生, 2006. 城市人口分布空间自相关的功率谱分析. 地球科学进展, 21 (1): 1-9. doi: 10.3321/j.issn:1001-8166.2006.01.001 [22] 陈彦光, 刘继生, 房艳刚, 等, 2002. 效用最大化、logit变换和城市地理学的数量分析模型. 地理科学, 22 (5): 581-586. doi: 10.3969/j.issn.1000-0690.2002.05.012 [23] 陈衍景, 张静, 张复新, 等, 2004. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式. 地质论评, 50 (2): 134-152. doi: 10.3321/j.issn:0371-5736.2004.02.004 [24] 段永民, 余晓红, 王汉林, 等, 2006. 甘肃柴家庄金矿床地球化学特征及矿床成因. 地质与勘探, 42 (1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200601004.htm [25] 高兰, 1998. 大水式金矿床——我国新发现的一种金矿成因类型. 矿床地质, 17 (增刊): 389-392. [26] 刘晓春, 王平安, 董法宪, 等, 2003. 甘肃大水二长岩类特征、结晶条件与侵位深度. 地质力学学报, 9 (1): 62-69. doi: 10.3969/j.issn.1006-6616.2003.01.008 [27] 罗建民, 侯云生, 张星虎, 等, 2006. 甘肃省金矿资源预测模型及潜力评价. 矿床地质, 25 (1): 53-59. doi: 10.3969/j.issn.0258-7106.2006.01.007 [28] 梅友松, 汪东坡, 黄浩, 等, 1995. 同位成矿概论. 地质与勘探, 31 (5): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT505.001.htm [29] 王安建, 高兰, 闫升好, 等, 1998. 大水式金矿床成因及分布规律探讨. 矿床地质, 17 (增刊): 267-270. [30] 魏民, 赵鹏大, 刘红光, 等, 2001. 中国岩金矿床品位-吨位模型研究. 地球科学——中国地质大学学报, 26 (2): 176-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102015.htm [31] 闫升好, 王安建, 高兰, 等, 2000a. 大水式金矿床地质特征及成因探讨. 矿床地质, 19 (2): 126-137. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200002003.htm [32] 闫升好, 王安建, 高兰, 等, 2000b. 大水式金矿床稳定同位素、稀土元素地球化学研究. 矿床地质, 19 (1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200001005.htm [33] 杨建功, 2001. 我国矿产资源储量管理已与国际接轨. 地质与勘探, 37 (2): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200102002.htm [34] 於崇文, 2003. 地质系统的复杂性——地质科学的基本问题(Ⅱ). 地球科学——中国地质大学学报, 28 (1): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205005.htm [35] 於崇文, 2007. 地质系统的复杂性(下). 北京: 地质出版社. [36] 赵鹏大, 陈永清, 刘吉平, 等, 1999. 地质异常成矿预测理论与实践. 武汉: 中国地质大学出版社.