• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    利用常规测井资料基于岩石物理和多矿物分析反演横波速度

    邵才瑞 印兴耀 张福明 宋明水

    邵才瑞, 印兴耀, 张福明, 宋明水, 2009. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度. 地球科学, 34(4): 699-707.
    引用本文: 邵才瑞, 印兴耀, 张福明, 宋明水, 2009. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度. 地球科学, 34(4): 699-707.
    SHAO Cai-rui, YIN Xing-yao, ZHANG Fu-ming, SONG Ming-shui, 2009. Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis. Earth Science, 34(4): 699-707.
    Citation: SHAO Cai-rui, YIN Xing-yao, ZHANG Fu-ming, SONG Ming-shui, 2009. Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis. Earth Science, 34(4): 699-707.

    利用常规测井资料基于岩石物理和多矿物分析反演横波速度

    基金项目: 中石化“十一·五”重大科技攻关项目
    详细信息
      作者简介:

      邵才瑞(1966-), 男, 博士, 副教授, 从事地球物理测井信息处理教学及科研工作.Email: shaocr@hdpu.edu.cn

    • 中图分类号: P584;P631.4

    Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis

    • 摘要: 测井横波速度是测井地震联合反演的重要标定参数.为克服大量老井缺少横波速度资料和现有横波速度估算方法的不足, 基于孔隙介质岩石物理理论, 通过常规测井资料求取多矿物组分, 利用VRH模型求得地层的等效弹性模量; 最后利用纵波速度作为约束条件, 根据Biot-Gassmann方程得到地层横波速度.计算结果与实测结果对比表明, 平均相对误差限在5%左右, 与Xu-White模型相比, 该方法物理意义更为明确, 使用更简便, 计算精度提高一倍左右.

       

    • 图  1  A井4 415~4 470 m砂泥简化模型与Xu-White模型对比

      Fig.  1.  Comparison of Xu-White and simplified multi-mineral mode for well A at 4 415-4 470 m

      图  2  A井3 000~4 470m不同模型与测井值交会对比(图例下同)

      a.VS-XVS交会图; b.VS-MVS交会图; MVS.多矿物模型; XVS.Xu-White模型; VS.测井结果

      Fig.  2.  Comparison of Xur White and multi-mineral mode VS log data for well A at 3 000-4 470m

      图  3  B井3 370~3 795m不同模型与测井值交会对比

      Fig.  3.  Comparison of Xu-White and multi-mineral mode VS log data for well B at 3 370-3 795m

      图  4  C井4 705~5 050m不同模型与测井值交会对比

      Fig.  4.  Comparison of Xu-White and multi-mineral mode VS log data for well C at 4 075-5 050m

      图  5  A井3 880~3 945m多矿物模型与Xu-White模型结果对比

      Fig.  5.  Comparison of Xu-White mode and multi-mineral mode for well A at 3 880-3 945m

      表  1  多矿物地层组分体积模型

      Table  1.   Multi-mineral mode of formation

      表  2  计算地层波速所用矿物组分参数

      Table  2.   Parameters for formation velocity calculation

      表  3  单矿物砂泥组分模型不同方法平均相对误差限比较

      Table  3.   Average relative error band comparison of different method under sand-shale mode

      表  4  多矿物组分析法与Xu-White砂泥模型平均相对误差限比较

      Table  4.   Average relative error band comparison of multi-mineral mode and Xu-White sand-shale mode

    • [1] Berryman, J. G., 1980a. Long-wavelength propagation incomposite elastic media. J. Acoust. Soc. Am. , 68 (6): 1809-1831. doi: 10.1121/1.385171
      [2] Berryman, J. G., 1980b. Confirmation of Biot's theory. Ap-pl. Phys Lett. , 37 (4): 382-384. doi: 10.1063/1.91951
      [3] Biot, M. A., 1956a. Theory of propagation of elastic waves ina fluid-saturated porous solid, Ⅰ: Low-frequency range. Acoust. Soc. Amer. , 28: 168-178. doi: 10.1121/1.1908239
      [4] Biot, M. A., 1956b. Theory of propagation of elastic waves ina fluid-saturated porous solid, Ⅱ: High-frequencyrange. Acoust. Soc. Amer. , 28: 179-191. doi: 10.1121/1.1908241
      [5] Biot, M. A., 1962. Mechanics of deformation and acousticpropagation in porous media. J. Appl. Phys. , 33 (4): 1482-1498. doi: 10.1063/1.1728759
      [6] Castagna, J. P., Batzle, M. L., Eastwood, R. L., et al., 1985. Relationship between compressional-wave and shear-wave velocities in clastic silicate rock. Geophysics, 50, 571-581. doi: 10.1190/1.1441933
      [7] Castagna, J. P., Batzle, M. L., Kan, T. K., et al., 1993. Rockphysics: The link between rock properties and AVOre-sponse. In: Castagna, J. P., Backus, M. M., eds., Offsetdependent reflectivity-theory and practice of AVOanal-ysis. SEG Investigations in Geophysics Series, 8: 135-171.
      [8] Chen, Y., Huang, T. F., 2001. Rock physics. Peking Univer-sity Press, Beijing (in Chinese).
      [9] Chu, Z. H., 1987. Theory of acoustic logging. Petroleum Industry Press, Beijing (in Chinese).
      [10] Dvorkin, J., Mavko, G., Nur, A., et al., 1995. Squirt flowinfully saturated rocks. Geophysics, 60 (1): 97-107. doi: 10.1190/1.1443767
      [11] Faust, L. Y., 1953. A velocity function including lithologicvariation. Geophysics, 18 (2): 271-288. doi: 10.1190/1.1437869
      [12] Gardner, G. H. F., Gardner, L. W., Gregory, A. R., et al., 1974. Formation velocity and density: The diagnosticbasics for stratigraphic traps. Geophysics, 39 (6): 770-780. doi: 10.1190/1.1440465
      [13] Gassmann, F., 1951. ber die elastizitat por ser Medien. Vi-erteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96: 1-23.
      [14] Hill, R., 1952. The elastic behavior of crystalling aggregate. Proc. Physical Soc. , A65: 349-354.
      [15] Krief, M., Garat, J., Stellingwerff, J., et al., 1990. A petro-physical interpretation using the velocities of P and Swaves (full-wave formsonic). The Log Analyst, 31 (6): 355-369.
      [16] Kuster, G. T., Toksöz, M. N., 1974. Velocity and attenuationof seismic waves in two-phase media, partⅠ: Theoreti-cal formulations. Geophysics, 39 (5): 587-606. doi: 10.1190/1.1440450
      [17] Mavko, G., Mukerji, T., Dvorkin, J., et al., 2003. The rockphysics handbook. Cambridge University Press, Cam-bridge.
      [18] Milholland, P., Manghnani, M. H., Schlanger, S. O., et al., 1980. Geoacoustic modeling of deep-sea carbonate sedi-ments. J. Acoust. Soc. Am. , 68 (5): 1351-1360. doi: 10.1121/1.385102
      [19] Pickett, G. R., 1963. Acoustic character logs and their appli-cations information evaluation. J. Petrol. Tech. , 15 (6): 659-667. doi: 10.2118/452-PA
      [20] Reuss, A., 1929. Berechnung der Fliegrenze Von Misch Kristallen. Angew. Mathem. U. Mech. , 9 (1): 49-58. doi: 10.1002/zamm.19290090104
      [21] Voight, W., 1910. Lehrbuch der Kristallphysik, Teunber-Verlag, Leipzig.
      [22] Wang, Y. M., Miao, Y. K., Meng, X. J., et al., 2006. Calcu-lation procedure of shear velocity curve on petrophys-ics. Petroleum Geology and Recovery Efficiency, 13 (4): 58-61 (in Chinese).
      [23] Winkler, K. W., 1983. Frequency dependent ultrasonic prop-erties of high porosity sandstone. Journal of Geophysi-cal Research, 88 (B11): 9493-9499. doi: 10.1029/JB088iB11p09493
      [24] Xie, J. Z., Chu, Z. H., Li, Y. H., et al., 2003. On the methodto determine residual oil saturation from acoustic com-pression coefficient. Well Logging Technology, 27 (3): 181-184 (in Chinese with English abstract).
      [25] Xu, S., White, R. E., 1995. A new velocity model for clay-sand mixtures. Geophys. Prospecting, 43 (1): 91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
      [26] Yong, S. H., Zhang, C. M., 1996. Digital processing and in-terpretation of well-logging. China University of Petro-leum Press, Dongying, 313-316 (in Chinese).
      [27] 陈颙, 黄庭芳, 2001. 岩石物理学. 北京: 北京大学出版社.
      [28] 楚泽涵, 1987. 声波测井原理. 北京: 石油工业出版社.
      [29] 王玉梅, 苗永康, 孟宪军, 等, 2006. 岩石物理横波速度曲线计算技术. 油气地质与采收率, 13 (4): 58-61. doi: 10.3969/j.issn.1009-9603.2006.04.018
      [30] 谢进庄, 楚泽涵, 李艳华, 等, 2003. 用声波弹性参数确定剩余油饱和度的方法探讨. 测井技术, 27 (3): 181-184. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200303002.htm
      [31] 雍世和, 张超谟, 1996. 测井数据处理与综合解释. 东营: 中国石油大学出版社, 313-316.
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  3587
    • HTML全文浏览量:  131
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-06-28
    • 刊出日期:  2009-07-25

    目录

      /

      返回文章
      返回