Adaptive Quantum Genetic Inversion Algorithm for One-Dimensional Magnetotelluric Inverse Problem
-
摘要: 将量子遗传算法引入到层状介质大地电磁数据的反演, 得到了层状介质的大地电磁量子遗传反演法.数值试验结果发现该算法仍然存在较严重的早熟收敛现象.为此, 将自适应思想引入到量子遗传算法中来, 通过动态调整量子遗传算法的模型搜索空间, 建立了一种新的改进型量子遗传算法——自适应量子遗传算法, 使算法在迭代过程中能自适应地寻找模型最优值.通过典型测试函数和层状介质大地电磁模型数值试验, 结果表明, 改进算法有效压制了常规量子遗传算法的早熟收敛性, 提高了算法的搜索效率和反演效果.采用该算法对实际的大地电磁资料进行了处理, 取得了较好的地质效果.Abstract: This paper applied the conventional quantum genetic algorithm (QGA) to solve the nonlinear magnetotelluric inverse problem of layered model.However, the conventional QGA shows a premature convergence problem throughout our numerical experiments.In order to overcome the shortcoming of premature convergence, we improved the conventional QGA with automatically adjusting the size of model space with different scales, and eventually developed a novel method, referred as to adaptive quantum genetic algorithm (AQGA), for the inversion of magnetotelluric data.The validity of AQGA method is demonstrated by some optimization test functions and synthetic magnetotelluric models.The results show that AQGA mitigate the premature convergence and improve the efficiency and accuracy of inverted models.The obtained models using AQGA for magnetotelluric field data are well agreed with geological structure, which inferred that the improved AQGA method is powerful for the nonlinear optimization problem.
-
Key words:
- adaptive /
- quantum genetic algorithm /
- MT /
- inversion /
- nonlinear optimization /
- geophysical prospecting.
-
表 1 搜索函数
取值 Table 1. The value of optimizing search function
表 2 两层D型层状介质的模型空间和分辨率
Table 2. Model space and resolution for two-layer (D-type) model
表 3 两层D型模型的QGA和AQGA方法的反演结果
Table 3. Inversion results using QGA and AQGA for two-layer (D-type) model
表 4 两层D型模型的加噪数据AQGA法反演结果
Table 4. Inversion results for random gauss noised data of two-layer model (D-type) using AQGA method
表 5 四层HK型层状介质的模型空间和分辨率
Table 5. Model space and resolution for four-layer model (HK-type)
表 6 四层HK型层状介质的AQGA法反演结果
Table 6. Inversion results for four-layer model (HK-type) using AQGA method
表 7 实测数据的AQGA法反演结果
Table 7. Inversion results of observed MT data using AQGA method
-
[1] Fan, X. Z., Hu, P., 2007. Active noise control method basedon a newquantumgenetic algorithm. Journal of NavalUniversity of Engineering, 19 (1): 61-64 (in Chinesewith English abstract). [2] Guo, H. Y., Jin, W. D., Li, L., et al., 2004. Classified quan-tum genetic algorithm and its application. Journal ofSouthwest University of Science and Technology, 19 (1): 18-21 (in Chinese with English abstract). [3] Han, K. H., Ki m, J. H., 2002. Quantum-inspired evolution-ary algorithmfor a class of combinatorial opti mization. In: Proceeding of the2002IEEE Congress on Evolu-tionary Computation. [4] Hou, Y. H., Lu, L. J., Xiong, X. Y., et al., 2004. Applicationof quantum-inspired evolutionary algorithmintransmis-sion network expansion planning. Power System Tech-nology, 28 (17): 19-23 (in Chinese with English ab-stract). [5] Li, Y., Jiao, L. C., 2003. An effective method of i mage edgedetection based on parallel quantum evolutionary algo-rithm. Signal Processing, 19 (1): 69-74 (in Chinesewith English abstract). [6] Lou, S. H., Li, Y., Wu, Y. W., et al., 2005a. Multi-objectivereactive power opti mization using quantumgenetic algo-rithm. High Voltage Engineering, 31 (9): 69-71 (inChinese with English abstract). [7] Lou, S. H., Wu, Y. W., Peng, L., et al., 2005b. Applicationof quantum-inspired evolutionary algorithmin reactivepower opti mization. Relay, 33 (18): 30-35 (in Chinesewith English abstract). [8] Luo, H. M., 2007. Quantum genetic algorithmand its appli-cation to inversion of geophysics (Dissertation). ChinaUniversity of Geosciences, Wuhan (in Chinese withEnglish abstract). [9] Shao, G. F., Li, Z. S., Liu, H., et al., 2005. Adaptive i magesegmentation algorithm based on genetic quantum. Computer Engineering, 31 (22): 189-191 (in Chinesewith English abstract). [10] Shi, X. M., Wang, J. Y., 1998. One di mensional magnetotel-luric sounding inversion using si mulated annealing. Earth Science—Journal of China University of Geo-sciences, 23 (5): 542-546 (in Chinese with English ab-stract). [11] Shi, X. M., Wang, J. Y., Zhang, S. Y., et al., 2000. Multi-scale genetic algorithm and its application in magneto-telluric sounding data inversion. Chinese Journal of Ge-ophysics, 43 (1): 122-130 (in Chinese with English ab-stract). [12] Wang. J. Y., 1998. Inverse theory in geophysics. China Uni-versity of Geosciences Press, Wuhan (in Chinese). [13] Wang, J. Y., 2007. Lecture on non-linear inverse methods ingeophysics (No.2) Monte Carlo Method. Chinese Jour-nal of Engineering Geophysics, 4 (2): 81-85 (in Chi-nese with English abstract). [14] Wu, Y. P., Chen, H. Y., Li, D. P., et al., 2006. Switches op-ti mal location scheme based on quantumevolution algo-rithmin distribution system. Modern Electric Power, 23 (3): 21-25 (in Chinese with English abstract). [15] Yang, J. A., Xie, G. J., Zhuang, Z. Q., et al., 2003. Quantumgenetic algorithmandits application to blindi mage sep-aration. Journal of Computer Aided Design & Com-puter Graphics, 15 (7): 847-852. [16] Yang, J. A., Zhuang, Z. Q., Shi, L., 2004. Multi-universeparallel quantum genetic algorithm. Acta ElectronicaSinica, 32 (6): 923-928 (in Chinese with English ab-stract). [17] Yang. W. C., 1997. Theory and methods of geophysical in-version. Geological Publishing House, Beijing (in Chi-nese). [18] Yao. Y., 1997. Monte Carlo nonlinear inversion methods andapplications. Metallurgical Industry Press, Beijing (inChinese). [19] 范晓志, 扈鹏, 2007. 基于改进量子遗传算法的有源噪声控制方法. 海军工程大学学报, 19 (1): 61-64. doi: 10.3969/j.issn.1009-3486.2007.01.014 [20] 郭海燕, 金炜东, 李丽, 等, 2004. 分组量子遗传算法及其应用. 西南科技大学学报, 19 (1): 18-21. doi: 10.3969/j.issn.1671-8755.2004.01.005 [21] 侯云鹤, 鲁丽娟, 熊信艮, 等, 2004. 量子进化算法在输电网扩展规划中的应用. 电网技术, 28 (17): 19-23. doi: 10.3321/j.issn:1000-3673.2004.17.005 [22] 李映, 焦李成, 2003. 一种有效的基于并行量子进化算法的图像边缘检测方法. 信号处理, 19 (1): 69-74. doi: 10.3969/j.issn.1003-0530.2003.01.017 [23] 娄素华, 李研, 吴耀武, 等, 2005a. 多目标电网无功优化的量子遗传算法. 高电压技术, 31 (9): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200509024.htm [24] 娄素华, 吴耀武, 彭磊, 等, 2005b. 量子进化算法在电力系统无功优化中的应用. 继电器, 33 (18): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200518007.htm [25] 罗红明, 2007. 量子遗传算法及其在地球物理反演中的应用研究(博士论文). 武汉: 中国地质大学. [26] 邵桂芳, 李祖枢, 刘恒, 等, 2005. 基于遗传量子的自适应图像分割算法. 计算机工程, 31 (22): 189-191. doi: 10.3969/j.issn.1000-3428.2005.22.066 [27] 师学明, 王家映, 1998. 一维层状介质大地电磁模拟退火反演法. 地球科学——中国地质大学学报, 23 (5): 542-546. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.024.htm [28] 师学明, 王家映, 张胜业, 等, 2000. 多尺度逐次逼近遗传算法反演大地电磁资料. 地球物理学报, 43 (1): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200001014.htm [29] 王家映, 1998. 地球物理反演理论. 武汉: 中国地质大学出版社. [30] 王家映, 2007. 地球物理资料非线性反演方法讲座(二) 蒙特卡洛法. 工程地球物理学报, 4 (2): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200702000.htm [31] 伍亚萍, 陈海焱, 李大鹏, 等, 2006. 基于量子进化算法的配电网开关优化配置研究. 现代电力, 23 (3): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDL200603005.htm [32] 杨俊安, 解光军, 庄镇泉, 等, 2003. 量子遗传算法及其在图像盲分离中的应用研究. 计算机辅助设计与图形学学报, 15 (7): 847-852. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200307013.htm [33] 杨俊安, 庄镇泉, 史亮, 2004. 多宇宙并行量子遗传算法. 电子学报, 32 (6): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200406010.htm [34] 杨文采, 1997. 地球物理反演的理论与方法. 北京: 地质出版社. [35] 姚姚, 1997. 蒙特卡洛非线性反演方法及应用. 北京: 冶金工业出版社.