Improvement of PML Absorbing Boundary Conditions in Elastic Wave Forward Modeling
-
摘要: 在弹性波有限差分正演模拟中, 完全匹配层(PML) 吸收边界条件是使用广泛、吸收效果最好的吸收边界条件.在目前的两种PML实现方法中, 分裂形式的完全匹配层(SPML) 方法计算存储量大、编程实现复杂; 非分裂形式的完全匹配层(NPML) 方法计算效率低、计算过程复杂.针对传统PML吸收边界条件在实现过程中存在的问题, 推导出了一种简洁有效的非卷积实现的NPML吸收边界条件, 既不需要对场分量进行分裂, 也不需要做复杂的卷积运算.分析结果表明, 本文实现的NPML吸收边界条件不仅具有良好的吸收衰减性能, 而且计算方程简单, 编程实现容易, 占有内存更小.Abstract: In finite-difference time-domain modeling of elastic waves, absorbing boundary conditions are used to mitigate undesired reflections from the model's truncation boundaries.The perfectly matched layer (PML) is generally acknowledged as the best available absorbing boundary condition and very efficient to absorb both body waves and surface waves.The classical splitting PML (SPML) has some disadvantages: it needs much computer memory and has complex programming process.And the conventional non-splitting PML (NPML) based on time convolution needs more auxiliary equations or fields and computing time.We have induced a simple and efficient NPML based on non-convolution technology in this paper.The NPML we induced does not have to split the velocity and stress fields and also doesn't need to involve in complex convolution in time domain.The analysis result shows the new PML method not only has perfect absorbing performance, but also has simple computing equations, easier programming and less memory consumption.
-
Key words:
- perfectly matched layer /
- absorbing boundaries /
- elastic wave /
- forward modeling /
- geophysics
-
表 1 不同PML吸收边界条件方法比较
Table 1. Comparing of some kinds of PML absorbing boundary conditions
-
[1] Bérenger, J. P., 1994. A perfectly matched layer for absorp-tion of electromagnetic waves. Journal of Computa-tional Physics, 114: 185-200. doi: 10.1006/jcph.1994.1159 [2] Chen, Y. H., Chew, W. C., Oristaglio, M. L., 1997. Applica-tion of perfectly matched layers to the transient model-ing of subsurface EMproblems. Geophysics, 62: 1730-1736. doi: 10.1190/1.1444273 [3] Chew, W. C., Liu, Q. H., 1996. Perfectly matched layers forelastodynamics: A new absorbing boundary condition. Journal of Computational Acoustics, 4: 341-359. doi: 10.1142/S0218396X96000118 [4] Chew, W. C., Weedon, W. H., 1994. A3D perfectly matchedmedium from modified Maxwell s equations withstretched coordinates. Microwave and Optical Technol-ogy Letters, 7: 599-604. doi: 10.1002/mop.4650071304 [5] Collino, F., Tsogka, C., 2001. Application of the PML ab-sorbing layer model to the linear elastodynamic problemin anisotropic heterogeneous media. Geophysics, 66: 294-307. doi: 10.1190/1.1444908 [6] Engquist, B., Majda, A., 1977. Absorbing boundary condi-tions for the numerical si mulation of waves. Mathemat-ics of Computation, 31 (9): 629-651. [7] Fang, D. G., Chen, B., 1996. Recent progress in the researchof perfectly matched layer. Journal of Nanjing Uni-versity of Science and Technology, 20 (6): 572-576 (in Chinese with English abstract). [8] Higdon, R. L., 1991. Absorbing boundary condition for elas-tic waves. Geophysics, 56: 231-241. doi: 10.1190/1.1443035 [9] Huang, B. K., Jiang, Y. S., Wang, W. B., 2003. A discussionon difference formulation in PML absorbtion boundarycondition. Journal of Microwaves, 19 (4): 1-4 (in Chi-nese with English abstract). [10] Imhof, M. G., 2002. Calculating the seismic effect of 3D un-derground structures and topography with the finite-difference method: 72nd Internat. Mtg., Soc. Expl. Geo-phys., Expanded Abstracts, 1939-1942. [11] Liao, Z. P., Wong, H. L., Yang, B. P., et al., 1984. Atrans-mitting boundary for transient wave analysis. Scientia Sinica, 27 (10): 1063-1076. [12] Liu, Q. H., Tao, J. P., 1997. The perfectly matched layer foracoustic waves in absorptive media. J. Acoust. Soc. Am., 102: 2072-2082. doi: 10.1121/1.419657 [13] Marfurt, K. J., 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equa-tions. Geophysics, 49: 533-549. doi: 10.1190/1.1441689 [14] Rappaport, C. M., 1995. Perfectly matched absorbing bound-ary conditions based on anisotropic lossy mapping ofspace. IEEE Microwave Guided Wave Lett., 5: 90-92. doi: 10.1109/75.366463 [15] Shan, Q. T., Yue, Y. X., 2007. Wavefield si mulation of2Dviscoelastic mediumin perfectly matched layer bounda-ry. Geophysical Prospecting for Petroleum, 46 (2): 126-130 (in Chinese with English abstract). [16] Shin, C., 1995. Sponge boundary condition for frequency-domain modeling. Geophysics, 60: 1870-1874. doi: 10.1190/1.1443918 [17] Teixeira, F. L., Chew, W. C., 1999. On causality and dynamicstability of perfectly matched layers for FDTD simula-tions. IEEE Transactions on Microwave Theory and Techniques, 47: 775-785. doi: 10.1109/22.769350 [18] Wang, T., Oristaglio, M. L., 2000.3D si mulation of GPRsurveys over pipes in dispersive soils. Geophysics, 65: 1560-1568. doi: 10.1190/1.1444844 [19] Wang, Y, G., Xing, W. J., Xie, W. X., et al., 2007. Study ab-sorbing boundary condition by perfectly matched layer. Journal of China University of Petroleum, 31 (1): 19-24 (in Chinese with English abstract). [20] Zeng, Y., He, J., Liu, Q. H., 2001. The application of theperfectly matched layer in numerical modeling of wavepropagation in poroelastic media. Geophysics, 66: 1258-1266. doi: 10.1190/1.1487073 [21] Zhu, Z. H., Lu, W. Z., Feng, K. S., 2006. The si mplificationof PML application and programming realization inFDTD calculation. Journal of Air Force Engineering University (Nature Science Edition), 7 (2): 55-57 (inChinese with English abstract). [22] 方大纲, 陈彬, 1996. 完全匹配层(PML) 的研究进展. 南京理工大学学报, 20 (6): 572-576. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG606.023.htm [23] 黄斌科, 蒋延生, 汪文秉, 2003. 关于完全匹配层吸收边界条件中差分格式的讨论. 微波学报, 19 (4): 1-4. doi: 10.3969/j.issn.1005-6122.2003.04.001 [24] 单启铜, 乐友喜, 2007. PML边界条件下二维粘弹性介质波场模拟. 石油物探, 46 (2): 126-130. doi: 10.3969/j.issn.1000-1441.2007.02.005 [25] 王永刚, 邢文军, 谢万学, 等, 2007. 完全匹配层吸收边界条件的研究. 中国石油大学学报(自然科学版), 31 (1): 19-24. doi: 10.3321/j.issn:1000-5870.2007.01.004 [26] 朱章虎, 卢万铮, 冯奎胜, 2006. FDTD计算中PML的简化应用及编程实现. 空军工程大学学报(自然科学版), 7 (2): 55-57. doi: 10.3969/j.issn.1009-3516.2006.02.017