Coulomb Stress Accumulation along Haiyuan Fault Zone
-
摘要: 用中国地壳运动观测网络区域站在海原断裂带附近的所有观测数据及跨断裂GPS剖面观测数据作为约束, 用Smith3D体力模型反演了海原断裂带断层滑动速率和断层闭锁深度, 计算了库仑应力积累率和地震矩积累率.采用遗传算法拟合GPS水平运动速度场, 拟合的最后残差均方根为1.2mm/a.反演结果为: 第一段毛毛山断裂左旋走滑运动速率为3.6mm/a, 闭锁深度为22km; 第二段老虎山断裂左旋走滑速率为10.5mm/a, 闭锁深度为11.4km; 第三、四、五段(海原断裂带西段、中段和东段) 滑动速率依次为3.5mm/a、5.8mm/a、5.7mm/a, 闭锁深度依次为8.5km、3.6km、4.3km.海原断裂带库仑应力积累率为0.48~1.59MPa/100a, 毛毛山断裂地震矩积累率较大, 但库仑应力积累率较小; 老虎山断裂库仑应力积累率和地震矩积累率均比较大; 海原断裂带(狭义) 中西段库仑应力积累率最大.Abstract: We caculate Coulomb stress accumulation rate and moment accumulation rate through inversing Haiyuan fault slipping rates and locking depths by using a Fourier solution of 3D body force model with constrains of CMONOC and GPS profiles data.Genetic algorithm has been applied to simulate the GPS velocity field.The last fitting rms residual is 1.2 mm/a.The result reveals that the slip rate of left lateral of Maomao Shan fault is 3.6 mm/a, and 22.2 km for the locking depth.For Laohushan, its slip rate is 10.5 mm/a and 11.4 km for locking depth.The slip rate in western segment, middle segment and eastern segment of Haiyuan fault (in narrow sense) is respectively 3.5 mm/a, 5.8 mm/a and 5.7 mm/a, and 8.5 km, 3.6 km and 4.3 km for the locking depth.The Coulomb stress accumulation rates are 0.48~1.59 MPa/100 a along Haiyuan fault zone.The Coulomb stress accumulation rate is large but the moment accumulation rate is small in Maomaoshan fault.In Laohushan fault both the Coulomb stress accumulation rate and moment accumulation rate are large.The Coulomb stress accumulation rates in the middle and western segments of Haiyuan fault (in narrow sense) are largest in all segments.
-
表 1 海原断裂带断层活动参数
Table 1. The fault parameters of H aiyuan fault zone
-
[1] Charles, G., 2006. Coulomb stress transfer and tectonic load-ing preceding the2002Denali fault earthquake. Bull. Seismol. Soc. Am., 96: 1662-1674. doi: 10.1785/0120050007 [2] Deng, Q. D., 1982. Active faults in China. Seismic Press, Beijing (in Chinese). [3] Ding, G. Y., Chen, J., Tian, Q. J., et al., 2004. Active faultsand magnitudes of left-lateral displacement along thenorthern margin of the Tibetan plateau. Tectonophys-ics, (380): 243-260. http://www.ingentaconnect.com/content/el/00401951/2004/00000380/00000003/art00010 [4] Fu, Z. X., Liu, G. P., Chen, Q. F., 2001. Dynamic analysis oninteraction betweenthe Haiyuan-Gulang-Changma greatearthquake in the north boundary of the Tibetan plat-eau. Seismology and Geology, 23 (1): 35-42 (in Chi-nese with English abstract). http://www.researchgate.net/publication/291825082_Dynamic_analysis_on_interaction_between_the_Haiyuan-Gulang-Changma_great_earthquake_in_the_north_boundary_or_the_Tibetan_plateau [5] Gan, W. J., Cheng, P. G., Zhou, D. M., 2005. Observation of aGPS profile across main faults on northeast margin ofTibetan plateau and data analysis. Seismology and Geolo-gy, 27 (2): 178-187 (in Chinese with English abstract). [6] He, W. G., Liu, B. C., Lü, T. Y., et al., 1994. Study on the segmentation of Laohushan fault zone. Northwestern Seismologic Journal, 16 (3): 66-72 (in Chinese withEnglish abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1512887 [7] He, W. G., Liu, B. C., Yuan, D. Y., et al., 2000. Research onslip rates of the Lenglongling active fault zone. North-western Seismologic Journal, 22 (1): 90-97 (in Chi-nese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb200001017 [8] He, W. G., Liu, B. C., Yuan, D. Y., et al., 1996. The Qua-ternary active characteristic of Maomaoshan fault. In: Study of Haiyuanfault zone. Science press, Beijing, 63-77 (in Chinese). [9] Herring, T. A., 2006. Global Kal man filter VLBI and GPSanalysis program, version4.10. Massachusetts Instituteof Technology, Cambridge. [10] Institute of Geology, China Earthquake Administration, Ningxia Earthquake Administration, 1990. Haiyuan ac-tive fault zone. Earthquake Press, Beijing (in Chinese). [11] King, G. C. P., Stein, R. S., Lin, J., 1994. Static stress chan-ges and the triggering of earthquakes. Bull. Seismol. Soc. Am., 84 (3): 935-953. http://www.onacademic.com/detail/journal_1000033975393010_b010.html [12] King, R. W., Bock, Y., 2006. Documentation for the GAMITGPS analysis software, version10.3. Massachusetts In-stitute of Technology, Cambridge. [13] Lasserre, C., Bukchin, B., Bernard, P., et al., 2001. Sourceparameters and tectonic origin of the1996June1Tianzhu (Mw=5.2) and1995July21Yongden (Mw=5.6) earthquakes near the Haiyuan fault (Gansu, China). Geophy. J. Int., 144 (1): 206-220. doi: 10.1046/j.1365-246x.2001.00313.x [14] Lasserre, C., Morel, P. H., Gaudemer, Y., et al., 1999. Postglacial left slip rate and past occurrence of M > 8earth-quakes on the western Haiyuan fault (Gansu, China). J. Geophys. Res., 104 (B8): 17633-17652. doi: 10.1029/1998JB900082 [15] Lasserre, C., Gaudemer, Y., Tapponnier, P., et al., 2002. Fast Late Pleistocene slip rate on the Leng Long Lingsegment of the Haiyuan fault, Qinghai, China. J. Geo-phys. Res., 107 (B11): 1-15. [16] Li, S. L., Zhang, X. K., Zhang, C. K., et al., 2001. Study oncrust structure of haiyuan strong earthquake region. Earthquake Researchin China, 16-23 (in Chinese withEnglish abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD200101002&dbcode=CJFD&year=2001&dflag=pdfdown [17] Liu, J., Xu, X. W., Li, Y. F., et al., 2007. On the complete-ness of paleoseismic records of strike-slip faults: An ex-ample from the Laohushan segment of the Haiyuanfault in Gansu, China, with a discussion of several prob-lems in the paleoearthquake study. Geological Bulletinof China, 26 (6): 650-660 (in Chinese with Englishabstract). http://www.researchgate.net/publication/288595700_On_the_completeness_of_paleoseismic_records_of_strike-slip_faults_an_example_from_the_Laohushan_segment_of_the_Haiyuan_fault_in_Gansu_China_with_a_discussion_of_several_problems_in_the_paleoearthquake [18] Matsu ura, M., Jackson, D. D., Cheng, A., 1986. Dislocation model for aseismic crustal deformation at Hollister, Cal-ifornia. J. Geophy. Res., 91 (B12): 12661-12674. doi: 10.1029/JB091iB12p12661 [19] Okada, Y., 1985. Surface deformation due to shear and ten-sile faults in a half-space. Bull. Seismol. Soc. Am., 75 (4): 1135-1154. doi: 10.1785/BSSA0750041135 [20] Okada, Y., 1992. Internal deformation due to shear and ten-sile faults in a half-space. Bull. Seismol. Soc. Am., 82 (2): 1018-1040. doi: 10.1785/BSSA0820021018 [21] Parsons, T., 2006. Tectonic stressing in California modeledfrom GPS observations. J. Geophys. Res., 111 (b03407): 1-16. http://www.researchgate.net/profile/Tom_Parsons9/publication/228675103_Tectonic_stress_in_California_modeled_from_GPS_observations/links/5ba1887592851ca9ed14b293/Tectonic-stress-in-California-modeled-from-GPS-observations.pdf [22] Parsons, T., Yeats, R. S., Yagi, Y., et al., 2006. Static stresschange from the8October, 2005M=7.6Kashmirearthquake. Geophys. Res. Lett., 33 (L06304): 1-4. [23] Ran, H. L., 2004. Earthquake probabilities and magnitude distribution (m≥6.7) along the Haiyuan fault, north-western China. Acta Seismologica Sinica, 26 (6): 609-615 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXY200406005.htm [24] Ran, Y. K., Deng, Q. D., 1998. Paleoearhquakes alongHaiyuan fault and discussion of grading on rupture oflarge earthquakes. Quaternary Sciences, (3): 271-278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199803010.htm [25] Savage, J. C., Smpson, R. W., 1997. Surface strain accumula-tion and the seismic moment tensor. Bull. Seismol. Soc. Am., (8): 1345-1353. http://www.openseismo.org/contributors/Lee/MoWorking_Backups/Mo2012_0424backup/MoWorking_DONE/Papers_NotUsed_DONE/0_Theory/651_S&S97_Savage&Simpson_BSSA1997_p1345.pdf [26] Shi, Y. L., 1992. Some application of genetic algorithmin ge-ophysical inversion problems. Chinese Journal of Geo-physics, 35 (Suppl. ): 367-371 (in Chinese with Eng-lish abstract). [27] Smith, B., Sandwell, D., 2003. Coulomb stress accumulationalong the San Andreas fault system. J. Geophys. Res., 108 (B6): 1-14. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=005CAA370DB344F8BC03AB8A2F256B1D?doi=10.1.1.205.2778&rep=rep1&type=pdf [28] Smith, B., Sandwell, D., 2004. Athree-di mensional semi-ana-lytic viscoelastic model for ti me-dependent analyses ofthe earthquake cycle. J. Geophys. Res., 109 (B12): 1-25. doi: 10.1029/2004JB003185/pdf [29] Surveying and Mapping College of Wuhan University, 2003. Theory of error and foundation of survey adjust ment. Wuhan University Press, Wuhan (in Chinese). [30] Thatcher, W., 1996. Microplate model for the present-daydeformation of Tibet. J. Geophys. Res., 112 (B01401): 1-13. http://www.researchgate.net/profile/Wayne_Thatcher/publication/228654200_Microplate_model_for_the_present-day_deformation_of_Tibet/links/00b4951f7033be45ef000000.pdf [31] Wan, Y. G., Shen, Z. K., Zeng, Y. H., et al., 2007. Evolutionof cumulative coulomb failure stress in northeasternQinghai-Xizang (Tibetan) plateau andits effect onlargeearthquake occurrence. Acta Seismologica Sinica, 29 (2): 115-129 (in Chinese with English abstract). http://www.cqvip.com/qk/86256X/200702/23993012.html [32] Wang, M., Shen, Z. K., Niu, Z. J., et al., 2003. The active block model of crustal movement in China mainland. Science in China (Series D), 33 (Suppl. ): 21-32 (inChinese). [33] Ward, S. N., 1994. A multidisciplinary approach to seismichazard in southern California. Bull. Seismol. Soc. Am., 84: 1293-1309. doi: 10.1785/BSSA0840051293 [34] Weertman, J., 1964. Continuum distribution of dislocationson faults with finite friction. Bull. Seismol. Soc. Am., (54): 1035-1058. http://authors.library.caltech.edu/48264/1/1035.full.pdf [35] Xu, X. W., Yu, G. H., Chen, G. H., et al., 1998. Near-surface character of permanent geologic deformationacross the mega-strike-slip faults in the northernTibetan plateau. Seismologyand Geology, 29 (2): 201-217 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200702001.htm [36] Yuan, D. Y., Liu, B. C., Lü, T. Y., et al., 1997. Slip rates ofthe Maomaoshan fault zone in Gansu Province obtainedby using ages of loess-palaeosoil sequence. Seismologyand Geology, 19 (1): 1-8 (in Chinese with English ab-stract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZDZ701.000.htm [37] Zeng, Y. H., 2001. Viscoelastic stress triggering of the1999Hiector Mine earthquake by the1992Landers earth-quake. Geophys. Res. Lett., 28 (15): 3007-3010. doi: 10.1029/2000GL012806 [38] Zhang, P. Z., Min, W., Deng, Q. D., et al., 2003. Paleoearth-quake rupture behavior and recurrence of great earthquakesalong the Haiyuan fault, northwestern China. Science inChina (Series D), 33 (8): 705-713 (in Chinese). [39] Zhang, Q. W., Zhang, P. Z., Wang, C., et al., 2004. Interac-tion of active faults and its effect on earthquake trigge-ring and delaying. Acta Geoscientica Sinica, 25 (4): 483-488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200404020.htm [40] Zhang, X., Jiang, Z. S., Wang, Q., et al., 2005. Inversion fornegative dislocation on elastic block boundaries alongthe northeast margin of Qinghai-Xizang block and pre-diction for strong earthquake location. Acta Seismologi-ca Sinica, 27 (6): 620-629 (in Chinese with Englishabstract). http://d.wanfangdata.com.cn/Periodical_dizhen-e200506006.aspx [41] Zhou, S. Y., 2008. Seismicity si mulation in western Sichuanof China based on the fault interactions and its i mplica-tion on the esti mation of the regional earthquake risk. Chinese Journal of Geophysics, 51 (1): 165-174 (inChinese with English abstract). [42] 邓起东, 1982. 中国活动断裂. 北京: 地震出版社. [43] 傅征祥, 刘桂萍, 陈棋福, 2001. 青藏高原北缘海原、古浪、昌马大地震间相互作用的动力学分析. 地震地质, 23 (1): 35-42. doi: 10.3969/j.issn.0253-4967.2001.01.004 [44] 甘卫军, 程朋根, 周德敏, 2005. 青藏高原东北缘主要活动断裂带GPS加密观测及结果分析. 地震地质, 27 (2): 178-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200502000.htm [45] 国家地震局地质研究所, 宁夏回族自治区地震局, 1990. 海原活动断裂带. 北京: 地震出版社. [46] 何文贵, 刘百篪, 吕太乙, 等, 1994. 老虎山断裂带的分段性研究. 西北地震学报, 16 (3): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ403.010.htm [47] 何文贵, 刘百篪, 袁道阳, 等, 1996. 毛毛山断裂带晚第四纪话动特征. 海原活动断裂研究(5). 北京: 科学出版社, 63-77. [48] 何文贵, 刘百篪, 袁道阳, 等, 2000. 冷龙岭活动断裂的滑动速率研究. 西北地震学报, 22 (1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200001017.htm [49] 李松林, 张先康, 张成科, 等, 2001. 海原8.5级大震区地壳结构探测研究. 中国地震, 17 (1): 16-23. doi: 10.3969/j.issn.1001-4683.2001.01.003 [50] 刘静, 徐锡伟, 李岩峰, 等, 2007. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性. 地质通报, 26 (6): 650-660. doi: 10.3969/j.issn.1671-2552.2007.06.004 [51] 冉洪流, 2004. 海原断裂带M≥6.7地震概率及其震级分布. 地震学报, 26 (6): 609-615. doi: 10.3321/j.issn:0253-3782.2004.06.006 [52] 冉勇康, 邓起东, 1998. 海原断裂的古地震及特征地震破裂的分级性讨论. 第四纪研究, (3): 271-278. doi: 10.3321/j.issn:1001-7410.1998.03.011 [53] 石耀霖, 1992. 遗传算法在地球物理反演问题中的一些应用. 地球物理学报, 35 (增刊): 367-371. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200701003.htm [54] 万永革, 沈正康, 曾跃华, 等, 2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响. 地震学报, 29 (2): 115-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200702000.htm [55] 王敏, 沈正康, 牛之俊, 等, 2003. 现今中国大陆地壳运动与活动块体模型. 中国科学(D辑), 33 (增刊): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1002.htm [56] 武汉大学测绘学院测量平差学科组, 2003. 误差理论与测量平差基础. 武汉: 武汉大学出版社. [57] 徐锡伟, 于贵华, 陈桂华, 等, 1998. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析. 地震地质, 29 (2): 201-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200702001.htm [58] 袁道阳, 刘百篪, 吕太乙, 1997. 利用黄土剖面的古土壤年龄研究毛毛山断裂的滑动速率. 地震地质, 19 (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ701.000.htm [59] 张培震, 闵伟, 邓起东, 等, 2003. 海原活动断裂带的古地震与强震复发规律. 中国科学(D辑), 33 (8): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308000.htm [60] 张秋文, 张培震, 王乘, 等, 2004. 断层间相互作用的触震与缓震效应定量评价. 地球学报, 25 (4): 483-488. doi: 10.3321/j.issn:1006-3021.2004.04.016 [61] 张希, 江在森, 王琪, 等, 2005. 青藏块体东北缘弹性块体边界负位错反演与强震地点预测. 地震学报, 27 (6): 620-629. doi: 10.3321/j.issn:0253-3782.2005.06.006 [62] 周仕勇, 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究. 地球物理学报, 51 (1): 165-174. doi: 10.3321/j.issn:0001-5733.2008.01.021