Nano-Crystal Calculation and Environmental Significance of the Complex Zn3(PhCH=CHCOO)6(phen)2·H2O
-
摘要: Zn3(PhCH=CHCOO)6(phen) 2.H2O晶体具有与锰氧化物及锰氢氧化物类似的微结构, 在生成环境与晶体化学微结构方面有明显的环境属性, 是一种新生环境矿物.为研究其纳米晶结构、最佳纳米尺度和环境矿物属性, 在溶液法合成该配合物晶体的基础上, 采用纳米晶参数计算方法, 对该配合物纳米级微粒的晶胞数、原子数、表面原子数和表面活性随微粒在纳米尺度范围内的变化进行了计算, 对比锰氢氧化物结构, 发现该配合物晶体活性、表面效应与颗粒尺度有密切关系, 内部结构具有鲜明的环境属性.结合晶体颗粒的比表面积与总原子数相对颗粒尺度的变化关系, 理论上确定了该颗粒最佳纳米化尺度为138nm, 为此类物质纳米晶在环境方面的研究应用奠定了基础.
-
关键词:
- Zn3(PhCH=CHCOO)6(phen)2·H2O /
- 晶体结构 /
- 纳米晶粒 /
- 纳米材料 /
- 结构稳定性与化学活性 /
- 环境属性
Abstract: The complex Zn3 (PhCH=CHCOO) 6 (phen) 2·H2O is a new environmental mineral.Its micro-structure is similar to that of manganese oxide and manganese hydroxide.The formation environment and micro-crystal structure have obvious environmental attribute.In order to investigate the nano-crystal structure, the optimum dimension, and the environment significance, we used the nano-crystal calculation method on the basis of the crystal structure of the title compound to discuss the crystal cell numbers, the atomicity, the surface layer atomicity and its proportion.By comparing the structure of manganese oxide and manganese hydroxide with the compound, we discuss its environmental attribute.It is found that the activity of the compound and surface effects are closely related with the particle size, and its inherence structure has obvious environmental attribute.Finally, we theoretically carry on the computation discussion to turning compounds into nanometer particle.The optimum dimension of its nano-particle is theoretically determined to be about 138 nm. -
表 1 Zn3 (PhCH=CHCOO) 6 (phen) 2·H2O配合物的晶体学数据
Table 1. Single crystal X-ray diffraction data and refinement details for Zn3 (PhCH=CHCOO) 6 (phen) 2·H2O
表 2 不同粒径微粒中所含的晶胞数和原子数
Table 2. Cell number and atomicity in particles with different granularities
表 3 颗粒尺度与表面积、比表面积、表面晶胞数关系
Table 3. Surface atomicity, surface area, specific surface area and surface cell number with different granularities
-
[1] Chen, J. X., Wang, J. K., Yin, Q. X., et al., 2006. Crystalmorphology prediction of hydrocortisone. Journal ofTianjin University, 39: 3-6 (in Chinese with Englishabstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TJDX2006S1001.htm [2] Chen, J. Z., 2001. The modern crystal chemistry theory andmethod. Higher Education Press, Beijing, 595-596 (inChinese). [3] Gao, X., Lu, A. H., Zheng, Z., et al., 2002. Review of theapplication of manganese oxide and hydroxide to thepurification of the polluted water system. Journal ofMineralogy and Petrology, 22 (3): 77-82 (in Chinesewith English abstract). http://www.researchgate.net/publication/316558809_Review_of_the_application_of_manganese_oxide_and_hydroxide_to_the_purification_of_the_polluted_water_system [4] Guo, G. Q., Wang, X. W., Chen, F. P., et al., 2006. Bis (2, 2-bipyridine-k2N, N') (hippurato-k2O, O') cadmium (Ⅱ) perchlorate dihydrate. Acta Cryst., E62: 2796-2798. [5] Han, W., Chen, J. Z., Wu, C. F., 2005. The calculation andstructural characteristics of mini mumand opti mumtalcnano-particles. Acta Petrologica et Mineralogica, 24 (2): 139-144 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSKW200502007&dbcode=CJFD&year=2005&dflag=pdfdown [6] Liang, S. Y., 1997. Preli minary researches on the biologicalgenesis of Pb Zn ore deposits in Northeast Guangxi. Journal of Mineralogy and Petrology, 17 (1): 90-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS701.013.htm [7] Liu, R., Qin, S., Lu, A. H., et al., 2003. The tunnel struc-ture of manganese oxides and hydroxides and environmenntal significance. Journal of Mineralogy and Petrol-ogy, 23 (4): 28-33 (in Chinese with English abstract). http://www.researchgate.net/publication/288655724_The_tunnel_structure_of_manganese_oxides_and_hydroxides_and_environmental_significance [8] Lu, A. H., 2002. Environmental Properties of Minerals andNatural Self-purification of Inorganic Minerals. Bulletinof Mineralogy Petrology and Geochemistry, 21 (3): 192-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200203009.htm [9] Mohamed, G., El-Wahab, Z. H. A., 2005. Mixed ligand com-plexes of bis (phenyli mine) schiff base ligands incorpo-rating pyridinium moiety, synthesis, characterization andantibacterial activity. Spectrochi mica Acta Part A: Mo-lecular and Biomolecular Spectroscopy, 61 (6): 1059-1068. doi: 10.1016/j.saa.2004.06.021 [10] Moulton, B., Rather, E. B., Zaworot, M. J., et al., 2001. In-terpenetration of covalent and non-covalent networks inthe crystal structures of{[M (4, 4′-bipyridine) 2 (NO3) 2]. 2p-nitroaniline}n where M=Co, 1, Ni, 2, Zn, 3. Crystal Engineering, 4: 309-317. doi: 10.1016/S1463-0184(01)00023-5 [11] Sheldrick, G. M., 1997. SHELXL-97: Programfor the refine-ment of crystal structure. University of GÖttingen Press, Germany. [12] Sheldrick, G. M., 2003. SADABS: Programfor empirical absorption correction of area detector data. University of GÖttingen Press, Germany. [13] Su, C. L., Wang, Y. X., 2006. Pollutant characteristics andpollution control of heavy metal contaminants in sedi-ments of Moshui Lake, Wuhan, China. Journal of Min-eralogy and Petrology, 26 (2): 111-116 (in Chinesewith English abstract). http://www.researchgate.net/publication/288281319_Pollutant_characteristics_and_pollution_control_of_heavy_metal_contaminants_in_sediments_of_Moshui_Lake_Wuhan_China [14] Tian, T., Luo, H. Y., Yang, C., et al., 2007. Preparation ofhigh purity and high specific surface area Mn3O4frompri mary manganese ores. Earth Science—Journal ofChina University of Geosciences, 32 (1): 119-122 (inChinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200701017.htm [15] Wang, X. W., Chen, F. P., Chen, L., et al., 2007. Crystalstructures and fluorescent properties of two linear tri-nuclear zinc (Ⅱ) complexes. Journal of MolecularStructure, 842: 75-80. http://www.onacademic.com/detail/journal_1000034026254610_b3c0.html [16] Wu, H. L., Gao, Y. C., Yu, K. B., 2004. (Trans-Cinnamato-O) (tris (2-benzi midazolyl methyl) amine) zinc (Ⅱ) ni-trate di methylformamide solvate monohydrate. Transi-tion Met Chem, 29: 175-182. doi: 10.1023/B:TMCH.0000019416.72896.c5 [17] 陈建新, 王静康, 尹秋响, 等, 2006. 氢化可的松晶体形貌预测. 天津大学学报, 39: 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX2006S1001.htm [18] 陈敬中, 2001. 现代晶体化学-理论与方法. 北京: 高等教育出版社, 595-596. [19] 高翔, 鲁安怀, 郑辙, 等, 2002. 锰的氧化物和氢氧化物在污染水体净化中的应用研究现状. 矿物岩石, 22 (3): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200201016.htm [20] 韩炜, 陈敬中, 吴驰飞, 2005. 滑石的最小及最佳纳米粒子的结构表征与计算. 岩石矿物学杂志, 24 (2): 139-144. doi: 10.3969/j.issn.1000-6524.2005.02.008 [21] 梁书艺, 1997. 桂东北铅锌矿床生物成因的初步研究. 矿物岩石, 17 (1): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS701.013.htm [22] 刘瑞, 秦善, 鲁安怀, 等, 2003. 锰氧化物和氢氧化物中的孔道结构矿物及其环境属性. 矿物岩石, 23 (4): 28-33. doi: 10.3969/j.issn.1001-6872.2003.04.008 [23] 鲁安怀, 2002. 矿物环境属性与无机界天然自净化功能. 矿物岩石地球化学通报, 21 (3): 192-196. doi: 10.3969/j.issn.1007-2802.2002.03.010 [24] 苏春利, 王焰新, 2006. 武汉市墨水湖沉积物重金属污染特征与防制对策. 矿物岩石, 26 (2): 111-116. doi: 10.3969/j.issn.1001-6872.2006.02.019 [25] 田甜, 罗红玉, 杨超, 等, 2007. 用软锰矿直接制备高纯高比表面四氧化三锰. 地球科学——中国地质大学学报, 32 (1): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701017.htm