• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高效纤维素降解菌系的构建

    李平 王焰新 刘琨 王艳红 童蕾

    李平, 王焰新, 刘琨, 王艳红, 童蕾, 2009. 高效纤维素降解菌系的构建. 地球科学, 34(3): 533-538.
    引用本文: 李平, 王焰新, 刘琨, 王艳红, 童蕾, 2009. 高效纤维素降解菌系的构建. 地球科学, 34(3): 533-538.
    LI Ping, WANG Yan-xin, LIU Kun, WANG Yan-hong, TONG Lei, 2009. Construction of A Microbial System for Efficient Degradation of Cellulose. Earth Science, 34(3): 533-538.
    Citation: LI Ping, WANG Yan-xin, LIU Kun, WANG Yan-hong, TONG Lei, 2009. Construction of A Microbial System for Efficient Degradation of Cellulose. Earth Science, 34(3): 533-538.

    高效纤维素降解菌系的构建

    基金项目: 

    国家杰出青年科学基金 40425001

    世界自然基金会资助课题 CN0879.01-2.5.02.01

    详细信息
      作者简介:

      李平(1975-), 女, 博士, 主要从事环境生物、污染控制方面的研究.E-mail: plicug@gmail.com

    • 中图分类号: X17

    Construction of A Microbial System for Efficient Degradation of Cellulose

    • 摘要: 筛选出能产生不同纤维素酶的10株纤维素降解菌, 系统地分析了各菌株的EG、CBH和BG酶等3类纤维素酶活.经各菌株优化组合、混合培养, 构建了一组由5株细菌(LCB03、LCB12、LCB52、LCD12和LCD51)组成、能协同作用的复合微生物菌系.经生理生化和分子水平鉴定, 这5株细菌分别为Pseudomonas citronellolis(香茅醇假单胞菌)、Stenotrophomonas malto-philia(嗜麦芽寡食单胞菌)、Pseudomonas aeruginosa(铜绿假单胞菌)、Pseudomonas aeruginosa(铜绿假单胞菌)和Flavobacterium mizutaii(水氏黄杆菌).复合菌系的各菌株可产生不同类型的纤维素酶, 且各类酶可以协同作用有效分解天然纤维素, 在纤维素类污染的治理与资源化利用中具有很好的应用前景.

       

    • 图  1  各菌株的3种纤维素酶活

      Fig.  1.  Endoglucanase, exoglucanase and cellobiase activities of the ten isolates

      图  2  复合菌系降解天然纤维素稻草的各种酶活

      Fig.  2.  Endoglucanase, exoglucanase and cellobiase activities of degrading natural cellulose by composite microbial system

      图  3  5株细菌16S rDNA的PCR产物琼脂糖电泳

      图  4  菌株LCB03、LCB12、LCB52、LCD12和LCD51基于16S rDNA序列的系统发育树

      Fig.  4.  Phylogenetic tree generated from an alignment of the 16S rDNA of strain LCB03, LCB12, LCB52, LCD12 and LCD51

      表  1  刚果红鉴别培养基透明圈直径(mm)

      Table  1.   Degrading capability identification by Congo

      表  2  平板混合培养情况

      Table  2.   Growth of bacteria on mixed culture plates

      表  3  五株细菌主要的生理生化特征

      Table  3.   Main physiological and biochemical characteristics of five isolates

    • [1] Angela, C. R., Marcela, B., Natalia, S. S., et al., 2008. Treat ment of paper pulp and paper mill wastewater by coagulation-flocculation followed by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 194 (1): 1-10. doi: 10.1016/j.jphotochem.2007.07.007
      [2] Bahia, A., Ali, G., 2006. Characterization of a novel β-gluco-sidase from a Stachybotrys stain. Biochemical Engineering Journal, 32 (1): 191-197.
      [3] Chen, Z. A., Deng, X. C., 2006. Progress in microbiologic utilization technology of crop straw. China Biogas, 24 (3): 31-35 (in Chinese with English abstract).
      [4] Dong, X. Z., Cai, M. Y., 2001. Manual of identification for general bacteriology. Science Press, Beijing, 66-191 (in Chinese).
      [5] Dun, B. Q., Wu, W., Wang, X. J., et al., 2008. Isolation and identification of a cellulose decomposing bacteria. Journal of Agricultural Science and Technology, 10 (1): 113-117 (in Chinese with English abstract).
      [6] Georgakakis, D., Krintas, T., 2000. Optimal use of the Hosoya system in composting poultry manure. Bioresource Technology, 72 (1): 227-233.
      [7] Ghose, T. K., 1987. Measurement of cellulase activities international union of pure and applied chemistry. Chemphere, 59 (2): 257-268.
      [8] Haruta, S., Cui, Z., Huang, Z., et al., 2002. Construction of a stable microbial community with high cellulose-degra-dation ability. Applied Microbiology and Biotechnology, 59 (4-5): 529-534. doi: 10.1007/s00253-002-1026-4
      [9] Hilden, L., Johansson, G., 2004. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnoogy Letters, 26 (22): 1683-1694. doi: 10.1007/s10529-004-4579-8
      [10] Keikhosro, K., Giti, E., Mohammad, J., 2006. Ethanol production fromdilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucorindicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 40 (1): 138-144. doi: 10.1016/j.enzmictec.2005.10.046
      [11] Li, P., Liu, D. L., Nahimana, L., et al., 2006. High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems. Journal of Environmental Sciences, 18 (3): 525-529.
      [12] Li, Y. H., Zhao, F. K., 2005. Advances in cellulase research. Chinese Bulletin of Life Sciences, 17 (5): 392-397 (inChinese with English abstract).
      [13] Lu, Y. X., Chen, K., Li, H. H., 2007. Screening of cellulose-degrading bacteria and study on its cellulose-producing condition. Journal of Anhui Agricultural Sciences, 35 (12): 3631-3644 (in Chinese with English abstract).
      [14] Petersson, L., Kvien, I., Oksman, K., 2007. Structure and thermal properties of poly (lactic acid) /cellulose whisk-ers nanocomposite materials. Composites Science and Technology, 67 (11-12): 2535-2544.
      [15] Ren, N. Q., Ma, F., 2002. Microbiology of pullution control. Harbin Institute of Technology Press, Harbin, 256-328 (in Chinese).
      [16] Weisburg, W. G., Barns, S. M., Pelletier, D. A., 1991. 16S ri-bosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173 (2): 697-703. doi: 10.1128/jb.173.2.697-703.1991
      [17] Wei, T. Y., Zhang, S. Q., Shao, L. G., et al., 2004. Isolation and study of a newstrain of cellulose degrading bacterium. Environmental Science and Technology, 27 (5): 1-3, 39 (in Chinese with English abstract).
      [18] Van Wyk, J. P. H., Mohulatsi, M., 2003. Biodegradation of wastepaper by cellulase from Trichoderma Viride. Bioresource Technology, 86 (1): 21-23. doi: 10.1016/S0960-8524(02)00130-X
      [19] Zeng, Q. L., 2008. Isolation and identification of straw cellulose-biodegrading filamentous fungi. Hubei Agricultural Sciences, 47 (6): 652-655 (in Chinese with English abstract).
      [20] Zhang, Y., Hi mmel, M., Mielenz, J., 2006. Outlook for cellu-lase improvement: Screening and selection strategies. Biotechnology Advances, 24 (5): 452-481. doi: 10.1016/j.biotechadv.2006.03.003
      [21] 陈子爱, 邓小晨, 2006. 微生物处理利用秸杆的研究进展. 中国沼气, 24 (3): 31-35. doi: 10.3969/j.issn.1000-1166.2006.03.008
      [22] 顿宝庆, 吴薇, 王旭静, 等, 2008. 一株高纤维素酶活力纤维素分解菌的分离与鉴定. 中国农业科技导报, 10 (1): 113-117. doi: 10.3969/j.issn.1008-0864.2008.01.020
      [23] 东秀株, 蔡妙英, 2001. 常见细菌系统鉴定手册. 北京: 科学出版社, 66-191.
      [24] 李燕红, 赵辅昆, 2005. 纤维素的研究进展. 生命科学, 17 (5): 392-397. doi: 10.3969/j.issn.1004-0374.2005.05.005
      [25] 卢月霞, 陈凯, 李海江, 2007. 一株纤维素降解细菌的筛选及产酶条件研究. 安徽农业科学, 35 (12): 3631-3644. doi: 10.3969/j.issn.0517-6611.2007.12.094
      [26] 任南琪, 马放, 2002. 污染控制微生物学. 哈尔滨: 哈尔滨工业大学出版社, 256-328. doi: 10.3969/j.issn.1000-1905.2002.03.034
      [27] 魏桃员, 张素琴, 邵林广, 等, 2004. 一株纤维素降解细菌的分离及特性研究. 环境科学与技术, 27 (5): 1-3, 39. doi: 10.3969/j.issn.1003-6504.2004.05.001
      [28] 曾青兰, 2008. 降解秸秆纤维素丝状真菌的分离鉴定. 湖北农业科学, 47 (6): 652-655. doi: 10.3969/j.issn.0439-8114.2008.06.013
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  3156
    • HTML全文浏览量:  104
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-01-12
    • 刊出日期:  2009-05-25

    目录

      /

      返回文章
      返回