• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    “协优”成矿预测方法的理论探索与实践

    郑有业 陈仁义 庞迎春 施俊法 高顺宝 左仁广

    郑有业, 陈仁义, 庞迎春, 施俊法, 高顺宝, 左仁广, 2009. “协优”成矿预测方法的理论探索与实践. 地球科学, 34(3): 511-524.
    引用本文: 郑有业, 陈仁义, 庞迎春, 施俊法, 高顺宝, 左仁广, 2009. “协优”成矿预测方法的理论探索与实践. 地球科学, 34(3): 511-524.
    ZHENG You-ye, CHEN Ren-yi, PANG Ying-chun, SHI Jun-fa, GAO Shun-bao, ZUO Ren-guang, 2009. 'Xieyou' Metallogenic Prediction Method: Theoretical Exploration and Practice. Earth Science, 34(3): 511-524.
    Citation: ZHENG You-ye, CHEN Ren-yi, PANG Ying-chun, SHI Jun-fa, GAO Shun-bao, ZUO Ren-guang, 2009. "Xieyou" Metallogenic Prediction Method: Theoretical Exploration and Practice. Earth Science, 34(3): 511-524.

    “协优”成矿预测方法的理论探索与实践

    基金项目: 

    教育部重大项目 308018

    国家科技支撑计划项目 2006BAB01A04

    国家重大基础研究发展计划973项目 2002CB412610

    详细信息
      作者简介:

      郑有业(1962-), 男, 教授, 博士生导师, 主要从事基础地质、成矿规律及矿产勘查评价工作.E-mail: zhyouye@163.com

    • 中图分类号: P624

    "Xieyou" Metallogenic Prediction Method: Theoretical Exploration and Practice

    • 摘要: 根据西藏野外地质工作难度大、工作程度极低、找矿信息少且获取极其困难这一实际, 在认真学习、吸收前辈成矿预测理论精髓及大量找矿实践和理论思考的基础上, 基于系统性、关联性、目标一致性、不充足判据的充足化、复杂与精确的反比性原则, 提出了西部工作程度极低地区快速逼近找矿目标的“协优”成矿预测法, 即只要优选出少量相互关联、目标一致、最能揭示某种类型成矿本质特征的关键信息组合, 就可能导致该类型矿床被发现.强调直接信息的先导作用及少数相互关联信息的明确指示意义, 突出信息与预测目标的一致性, 这样可有效减少信息的不确定性和多解性, 从而降低找矿风险.试图从另一个视角、另一种思路来认识和探讨西部工作程度极低地区的成矿预测问题.该方法应用于冈底斯、北喜马拉雅及念青唐古拉等成矿带的勘查实践, 找矿取得了巨大突破.这对促进冈底斯相邻地区乃至整个西部地区的找矿评价、技术方法进步等具有重要的参考与借鉴意义.

       

    • 图  1  “协优”成矿预测方法流程

      Fig.  1.  Flow chart of "Xieyou"metallogenic prediction method

    • [1] Adams, S. S., Putnam, B. R. Ⅲ., 1992. In: Annels, A. E., ed., Case histories and methods in mineral resource evalution. Geological Society Special Publication, (63): 1-23.
      [2] Agterberg, F. P., 1974. Geomathematics—Mathematical background and geoscience applications. Elsevier, Amsterdam, 596.
      [3] Agterberg, F. P., Chung, C. F., Fabbri, G. A., et al., 1972. Geomathematical evaluation of copper and zinc potential of the Abitibi area, Ontario and Quebec. Paper-Geological Survey of Canada, 71-41, 43.
      [4] Agterberg, F. P., Kelly, A. M., 1971. Geomathematical methods for use in prospecting. Canadian Mining Journal, 92 (5): 61-72.
      [5] Allais, M., 1957. Method of appraising economic prospects of mining exploration over large territories—Algerian Sahara case study. Management Science, 3 (4): 285-347. doi: 10.1287/mnsc.3.4.285
      [6] Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F., 1988. GIS for mineral exploration: Gold exploration in Nova Scotia (in GIS; integrating technology and geoscience applications, Thomas). Natl. Acad. Sci., Washington, DC, United States, 22-23.
      [7] Chen, Y. C., 1999. Modern theories and methods on exploration and assessment of mineral resources. Seismological Press, Beijing (in Chinese).
      [8] Chen, Y. C., Ye, T. Z., Zhang, H. T., 1999. Mineral resources assessment of major metallogenic provinces in China. Geological Publishing House, Beijing (in Chinese).
      [9] Chen, Y. Q., Liu, H. G., 2001. A preliminary view on digital pattern for mineral exploration based on geoanomaly. Earth Science—Journal of China University of Geosciences, 26 (2): 129-134 (in Chinese with English abstract).
      [10] Cheng, Y. Q., Chen, Y. C., Zhao, Y. M., 1979. Preliminary discussion on the problems of minerogenetic series of mineral deposits. Acta Geoscientia Sinica, 1 (1): 32-58 (in Chinese with English abstract).
      [11] Cui, B., Li, Z., 1998. Synthetic metallogenic prediction in the material field-energy field-spatial field. Geoscience—Journal of Graduate School, China University of Geosciences, 12 (4): 501-505 (in Chinese with English abstract).
      [12] Dai, Z. X., Wang, J. S., 2004. Hundred years of mineral exploration. Seismological Press, Beijing (in Chinese).
      [13] Du, L. T., 2003. Lore of searching: Dialectics of "seeking". China Land Press, Beijing, 132 (in Chinese).
      [14] Harris, D. P., 1965. An application of multivariate statistical analysis to mineral exploration. Pennsylvania State University at University Park, University Park, PA, United States, Doctoral Thesis, 278.
      [15] Harris, D. P., 1973. A subjective probability appraisal of metal endowment of northern Sonora, Mexico. Economic Geology, 68 (8): 1345-1346. doi: 10.2113/gsecongeo.68.8.1345
      [16] Ji, K. J., Wang, L. B., 1994. The significant research progress of the source of hydrothermal solution and "triple-source" metasomatic hydrothermal metallogeny. Earth Science Frontiers, 1 (3-4): 126-132 (in Chinese with English abstract).
      [17] Legge, P. J., 1995. Geoscience 1994 and beyond: Thoughts on geology and exploration for world-class ore deposits. Australian Journal of Earth Sciences, 42 (1): 1-10. doi: 10.1080/08120099508728174
      [18] Pei, R. F., Xiong, Q. Y., 1999. Hierarchy systematic metallogeny of a metallogenic province and assessment of mineral exploration. In: Chen, Y. C., ed., Modern theories and methods on exploration and assessment of mineral resources. Seismological Press, Beijing, 134-142 (in Chinese).
      [19] Pei, R. F., Xiong, Q. Y., Shen, B. F., et al., 2001. Geological assessment of mineral resources potential for hard-identified concealed large and rich ore deposits. Geological Publishing House, Beijing (in Chinese).
      [20] Shi, J. F., Yao, H. J., Li, Y. Z., et al., 2005.100 examples for strategy of informational exploration and exploitation. Geological Publishing House, Beijing (in Chinese).
      [21] Singer, D. A., 1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 2 (2): 69-81. doi: 10.1007/BF02272804
      [22] Sun, Q. Z., 1986. Marginal metallogeny: Interrelationship of spatiotemporal distribution and genesis of mineral deposits. Geology and Prospecting, 22 (1): 7-14 (in Chinese).
      [23] Sun, Q. Z., 1994. Marginal mineralization and mineralization marginal effects. Earth Science Frontiers, 1 (4): 176-183 (in Chinese with English abstract).
      [24] Wang, S. C., Chen, Y. L., Xia, L. X., 2002. The theory and method of mineral resources prediction of synthetic information. Science Press, Beijing (in Chinese).
      [25] Wang, S. C., Chen, Y. Q., 1995. The theoretical system of comprehensive prognosis for gold ore-forming series. Gold Geology, 1 (1): 1-7 (in Chinese with English abstract).
      [26] Warin, O. N., 1997. Mineral exploration into the millennium! Geoscientist, 7 (3): 5-6.
      [27] Woodall, R., 1994. Empiricism and concept in successful mineral exploration. Australian Journal of Earth Sciences, 41 (1): 1-10. doi: 10.1080/08120099408728107
      [28] Wu, Q. L., Jiang, S. H., 2004. The analysis of predicting and decision-making. Southeast University Press, Nanjing (in Chinese).
      [29] Xiao, K. Y., Zhang, X. H., Song, G. Y., et al., 1999. Development of GIS—Based mineral resources assessment system. Earth Science—Journal of China University of Geosciences, 24 (5): 525-528 (in Chinese with English abstract).
      [30] Xie, S. C., Yin, H. F., 1997. Metallogenetic system of organism-organic matter-fluid. China University of Geosciences Press, Wuhan (in Chinese).
      [31] Xie, X. J., 1997. New strategy for exploration of ore resources. Geophysical & Geochemical Exploration, 21 (6): 402-410 (in Chinese with English abstract).
      [32] Yang, Z. X., 2000. Development and current state of metallogenetic regularities and predictions in western countries. Journal of Chengdu University of Technology, 27 (Suppl.): 259-263 (in Chinese with English abstract).
      [33] Yin, H. F., Zhang, W. H., Zhang, Z. J., et al., 1999. The biometallogenesis system. China University of Geosciences Press, Wuhan (in Chinese).
      [34] Zhang, B. X., 1999. A thinking for the studies of mineral deposits and the practice of exploration. Earth Science Frontiers, 6 (1): 1-12 (in Chinese with English abstract).
      [35] Zhang, J., 1997. Present studying situation and trends of the location prediction of orebody. Advance in Earth Sciences, 12 (3): 242-246 (in Chinese with English abstract).
      [36] Zhai, Y. S., 1998. The fabric frame and basic types of metallogenic system. In: Institute of Geochemistry of Chinese Academy of Sciences, ed., The symposium of seminar on resources and environment science about China sustainable development. Science Press, Beijing (in Chinese).
      [37] Zhai, Y. S., 1999. On the metallogenic system. Earth Science Frontiers, 6 (1): 13-27 (in Chinese with English abstract).
      [38] Zhai, Y. S., 2003. Research on metallogenic system. Geological Survey and Research, 26 (2): 65-71 (in Chinese with English abstract).
      [39] Zhao, P. D., Chen, J. P., Chen, J. G., 2001. On diversity of mineralization and the spectrum of ore deposits. Earth Science—Journal of China University of Geosciences, 26 (2): 111-117 (in Chinese with English abstract).
      [40] Zhao, P. D., Chen, J. P., Zhang, S. T., 2003. The new development of "three components" quantitative mineral prediction. Earth Science Frontiers, 10 (2): 455-463 (in Chinese with English abstract).
      [41] Zhao, P. D., Chen, Y. Q., Li, J. P., et al., 1999. Theory and practice of geoanomaly in mineral exploration. China University of Geosciences Press, Wuhan (in Chinese).
      [42] Zhao, Z. Y., Wang, S. C., Xu, Y. M., et al., 2002. Application and research of theory of mineral resources prognosis of synthetic information in the crises mine. World Geology, 21 (3): 283-286, 299 (in Chinese with English abstract).
      [43] Zheng, Y. Y., Duo, J., Zhang, G. Y., et al., 2007. Discovery of Jiru porphyry copper deposit in Tibet and its significance. Mineral Deposits, 26 (3): 317-431 (in Chinese with English abstract).
      [44] Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The discovery of the Zhunuo porphyry copper deposit in Tibet and its significance. Earth Science Frontiers, 13 (4): 233-239 (in Chinese with English abstract).
      [45] Zhu, Y. S., 2006. Basic theory of mineral resources assessment—Theory system between regional metallogeny to mineral exploration. Acta Geologica Sinica, 80 (10): 1518-1527 (in Chinese with English abstract).
      [46] Zhu, Y. S., Wang, F. T., Long, B. L., et al., 2003. Polygenic information prospecting model for Tuwu-Yandong porphyry Cu-Mo deposits. Mineral Deposits, 26 (3): 287-294 (in Chinese with English abstract).
      [47] Zhu, Z. S., Zhang, Q. X., Yang, L. Q., et al., 1991. The seeking anomaly theory and nonmodel prediction. In: The fourth national conference of mathematical geology and the international reference of statistical prediction of ore deposits in Wuhan, China mathermatical geology (3). Geological Publishing House, Beijing, 49-55 (in Chinese).
      [48] Zhu, Z. S., Zhu, L., 1998. Prediction theory and method system of deposits in China. Journal of Chengdu University of Technology, 25 (Suppl. ): 1-7 (in Chinese with English abstract).
      [49] 陈毓川, 1999. 当代矿产资源勘查评价的理论与方法. 北京: 地震出版社.
      [50] 陈毓川, 叶天竺, 张洪涛, 等, 1999. 中国主要成矿区带矿产资源远景评价. 北京: 地质出版社.
      [51] 陈永清, 刘红光, 2001. 初论地质异常数字找矿模型. 地球科学——中国地质大学学报, 26 (2): 129-134.
      [52] 程裕淇, 陈毓川, 赵一鸣, 1979. 初论矿床的成矿系列问题. 地球学报, 1 (1): 32-58.
      [53] 崔彬, 李忠, 1998. 物质场-能量场-空间场综合成矿预测. 现代地质, 12 (4): 501-505.
      [54] 戴自希, 王家枢, 2004. 矿产勘查百年. 北京: 地震出版社.
      [55] 杜乐天, 2003. 搜索学: "找"的辩证法. 北京: 中国大地出版社.
      [56] 季克俭, 王立本, 1994. 热液源研究的重要进展和"三源"交代热液成矿学说. 地学前缘, 1 (3-4): 126-132.
      [57] 裴荣富, 熊群尧, 1999. 金属成矿省等级体制成矿与矿产勘查评价. 见: 陈永清编, 当代矿产勘查评价的理论与方法. 北京: 地震出版社.
      [58] 裴荣富, 熊群尧, 沈保丰, 等, 2001. 难识别及隐伏大矿、富矿资源潜力的地质评价. 北京: 地质出版社.
      [59] 施俊法, 姚华军, 李友枝, 等, 2005. 信息找矿战略与勘查百例. 北京: 地质出版社.
      [60] 孙启祯, 1986. 论边缘成矿——关于金属矿床的时空分布及其成因联系. 地质与勘探, 22 (1): 7-14.
      [61] 孙启祯, 1994. 边缘成矿与成矿边缘效应. 地学前缘, 1 (4): 176-183. doi: 10.3321/j.issn:1005-2321.1994.04.021
      [62] 王世称, 陈永良, 夏立显, 2002. 综合信息矿产预测理论与方法. 北京: 科学出版社.
      [63] 王世称, 陈永清, 1995. 金矿综合信息成矿系列预测理论体系. 黄金地质, 1 (1): 1-7.
      [64] 吴清烈, 蒋尚华, 2004. 预测与决策分析. 南京: 东南大学出版社.
      [65] 肖克炎, 张晓华, 宋国耀, 等, 1999. 应用GIS技术研制矿产资源评价系统. 地球科学——中国地质大学学报, 24 (5): 525-528.
      [66] 谢树成, 殷鸿福, 1997. 生物-有机质-流体成矿系统——以南京栖霞山铅锌银锰多金属矿床为例. 武汉: 中国地质大学出版社.
      [67] 谢学锦, 1997. 矿产勘查的新战略. 物探与化探, 21 (6): 402-410.
      [68] 阳正熙, 2000. 西方国家的"成矿规律和成矿预测"的发展和现状. 成都理工学院学报, 27 (增刊): 259-263.
      [69] 殷鸿福, 张文淮, 张志坚, 等, 1999. 生物成矿系统论. 武汉: 中国地质大学出版社.
      [70] 张炳熹, 1999. 浅谈矿床研究与勘查实践. 地学前缘, 6 (1): 1-12. doi: 10.3321/j.issn:1005-2321.1999.01.001
      [71] 张均, 1997. 矿体定位预测的研究现状及趋向. 地球科学进展, 12 (3): 242-246.
      [72] 翟裕生, 1998. 成矿系统的结构框架和基本类型. 见: 中国科学院地球化学研究所编, 资源环境与可持续发展论文集. 北京: 科学出版社.
      [73] 翟裕生, 1999. 论成矿系统. 地学前缘, 6 (1): 13-27. doi: 10.3321/j.issn:1005-2321.1999.01.002
      [74] 翟裕生, 2003. 成矿系统研究与找矿. 地质调查与研究, 26 (2): 65-71. doi: 10.3969/j.issn.1672-4135.2003.02.001
      [75] 赵鹏大, 陈建平, 陈建国, 2001. 成矿多样性与矿床谱系. 地球科学——中国地质大学学报, 26 (2): 111-117.
      [76] 赵鹏大, 陈建平, 张寿庭, 2003. "三联式"成矿预测新进展. 地学前缘, 10 (2): 455-463. doi: 10.3321/j.issn:1005-2321.2003.02.025
      [77] 赵鹏大, 陈永清, 刘吉平, 等, 1999. 地质异常成矿预测理论与实践. 武汉: 中国地质大学出版社.
      [78] 赵震宇, 王世称, 许亚明, 等, 2002. 综合信息矿产预测理论在危机矿山资源预测中的应用思考. 世界地质, 21 (3): 283-286, 299. doi: 10.3969/j.issn.1004-5589.2002.03.015
      [79] 郑有业, 多吉, 张刚阳, 等, 2007. 西藏吉如斑岩铜矿床的发现过程及意义. 矿床地质, 26 (3): 317-431. doi: 10.3969/j.issn.0258-7106.2007.03.008
      [80] 郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13 (4): 233-239. doi: 10.3321/j.issn:1005-2321.2006.04.021
      [81] 朱裕生, 2006. 矿产预测理论——区域成矿学向矿产勘查延伸的理论体系. 地质学报, 80 (10): 1518-1527. doi: 10.3321/j.issn:0001-5717.2006.10.005
      [82] 朱裕生, 王福同, 龙宝林, 等, 2003. 土屋-延东斑岩型铜(钼)矿床多源信息找矿模型. 矿床地质, 26 (3): 287-294. doi: 10.3969/j.issn.0258-7106.2003.03.010
      [83] 朱章森, 张庆希, 杨丽清, 等, 1991. 求异理论与无模型预测. 见: 第四届全国数学地质会议—武汉国际矿床统计预测会议集, 中国数学地质(3). 北京: 地质出版社, 49-55.
      [84] 朱章森, 朱磊, 1998. 矿床定量预测理论与方法体系. 成都理工学院学报, 25 (增刊): 1-7.
    • 加载中
    图(1)
    计量
    • 文章访问数:  3539
    • HTML全文浏览量:  111
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-11-01
    • 刊出日期:  2009-05-25

    目录

      /

      返回文章
      返回