Seismic Velocity Study and Application Constrained by Sequence Stratigraphy Framework-A Case Study on the SN21 Well Area, Junggar Basin, China
-
摘要: 在对准噶尔盆地腹部石南21井区岩性地层油气藏研究中, 将层序地层学的研究成果与地球物理中的速度分析相结合, 以高精度层序地层格架为指导, 对层序地层格架内的地层进行速度研究, 目的在于预测出储层内部有利砂岩发育区及储层埋深, 为井位论证提供重要的基础资料.首先以岩心资料、测井资料和地球化学资料为基础, 确定层序界面识别标志, 通过单井相划分、合成地震记录制作, 在地震剖面上识别层序界面, 通过层序对比和追踪, 建立起研究区等时地层格架, 并以此作为速度研究的模型层位, 利用模型迭代层速度反演法, 有针对性地进行层序地层格架内部的层速度分布规律研究.结果表明, 研究目标层序白垩系清水河组(CX0-CX3) 的层速度分布规律是: 南及东南部砂体发育区地层速度高, 北部泥岩相对发育区地层速度低, 速度的高低反映了砂岩含量的多少; 速度图上高速区和低速区的平面分布形态, 与属性图的平面分布范围和形态基本吻合, 振幅属性图上的异常体是高速异常体, 速度与振幅类地震属性在反映储层非均质性和砂体横向变化方面是相互印证、相互补充的.此外, 在层序格架下的层速度反演基础上得到的目标层序CX3界面的平均速度图, 其系统误差和随机噪音的影响小, 时深转换所得CX3界面构造图等值线走势合理, 即使井资料较少, 也能得到形态正确精度较高的构造图.模拟勘探评价5个阶段的误差分析表明, 钻前预测误差不超过0.33%, 有效降低了岩性地层油气藏勘探的深度设计误差和风险.Abstract: In this paper, we present a case study where we combine sequence stratigraphiy with seismic velocity study for a 3D seismic survey landing at the SN21 well area in Junggar Basin, China.The main trap in this area is subtle composite trap of structure and lithology.Our purpose is to provide essential maps for demonstrating well location by predicting reservoir's lateral distribution and its depth.Firstly, according to the principle of sequence stratigraphy and the correlation analysis of well logs and seismic data, we constructed high-resolution stratigraphic frameworks in this subtle-reservoir area.Each framework has its given geological meaning.The three main frameworks are CX0 (reflection of QSH top), CX3 (reflection of TTH top), and CX5 (reflection of TTH bottom).Secondly, by using ray tracing techniques, we merged these sequence stratigraphic frameworks with the seismic rms velocities, as well as controlled logging and geological constraints, to estimate seismic interval velocity model of these stratigraphic frameworks.Study results demonstrate that, within target strata (CX0-CX3), the south and southeastern sand distribution area shows high velocity values, while the north mudstone low velocity values.The magnitude of velocity reflects the sand content.Study results also prove that the seismic velocity and the seismic amplitude attribute corroborates each other in predicting sand distribution.Furthermore, the estimated final velocity model for time to depth conversion has few systemic and random errors, and the predicted structure maps with this velocity model turn out to be of relatively high precision and coincide with the subsequent drilling data.
-
表 1 地震预测深度和预测误差统计
Table 1. Seismic computing depth and estimating errors
-
[1] Al-Chalabi, M., 1973. Series approximation in velocity andtraveltime computations. Geophysical Prospecting, 21 (4): 783-795. doi: 10.1111/j.1365-2478.1973.tb00058.x [2] Causse, E., Haugen, G. V., Rommel, B., et al., 2000. Largeoffset approximation to seismic reflection traveltimes. Geophysical Prospecting, 48 (4): 763-778. doi: 10.1046/j.1365-2478.2000.00207.x [3] Chen, C. R., Zhou, X. X., 1999. An inversion method of in-tercal velocity. Computing Techniques for Geophysicaland Geochemical Exploration, 21 (3): 212-215 (in Chinese with English abstract). [4] Cook, E. E., Taner, M. T., 1969. Velocity spectra and theiruse in stratigraphic and lithologic differentiation. Geophysical Prospecting, 17 (4): 433-448. doi: 10.1111/j.1365-2478.1969.tb01988.x [5] Dix, C. H., 1955. Seismic velocity from surface measure-ment. Geophysics, 20: 68. doi: 10.1190/1.1438126 [6] Duan, Y. Q., Wang, Y. C., Qin, T., et al., 2007. Applicationof reservoir seismic inversion at Damintun sagin Liaoheoilfield. Earth Science-Journal of China Universityof Geosciences, 32 (4): 554-558 (in Chinese with Eng-lish abstract). [7] Garotta. R., Michon, D., 1967. Continuous analysis of thevelocity function and the move out corrections. Geophysical Prospecting, 15 (4): 584-597. doi: 10.1111/j.1365-2478.1967.tb01805.x [8] Hong, T. Y., Cai, X. Y., He, Z. L., et al., 2006. Unconformi-ty features of Cretaceous bottom in the back-land ofJunggar basin. Xinjiang Geology, 24 (3): 229-233 (in Chinese with English abstract). [9] Ji, Y. L., Zhang, S. Q., 1996. The sequence stratigraphy ofcontinental fault depression of lake basin. PetroleumIn-dustry Press, Beijing (in Chinese). [10] Jia, Z. Y, Cai, Z. X., 1997. Sequence and cycle. Earth Science-Journal of China University of Geosciences, 22 (5): 449-455 (in Chinese with English abstract). [11] Kuang, L. C., Lü, H. T., Qi, X. F., et al., 2005. Explorationand targets for lithologic reservoirs in Junggar basin, NW China. Petroleum Exploration and Development, 32 (6): 32-37, 65 (in Chinese with English abstract). [12] Li, S. T., Pan, Y. L., Lu, Y. C., et al., 2002. Key technologyof prospecting and exploration of subtle traps in lacus-trine fault basins: Sequence stratigraphic researches onthe basis of high resolution seismic survey. Earth Science-Journal of China University of Geosciences, 27 (5): 592-598 (in Chinese with English abstract). [13] Li, X. L., Liu, W. L., Ma, T., et al., 1997. Seismic velocitystudyin Yingmaili area of Tarimbasin. Oil Geophysical Prospecting, 32 (Suppl.): 75-85 (in Chinese with English abstract). [14] Liao, Y. T., Zhang, S. M., Xia, P. Y., et al., 2005. Sequence stratigraphy of Es3 member in Wendong district, Dong-pu depression. Earth Science-Journal of China University of Geosciences, 30 (2): 133-139 (in Chinese with English abstract). [15] Ling, Y., Liu, D. G., Huang, G. R., et al., 2006. The studyon sedimentary facies of Toutunhe Formation in Shinanarea. Xinjiang Oil and Gas, 2 (2): 19-22 (in Chinese with English abstract). [16] Liu, C. Y., Wang, C. X., Zhao, B., et al., 2003. Interval ve-locity scan for model building using CFP technology. Geophysical Prospecting for Petroleum, 42 (3): 294-297 (in Chinese with English abstract). [17] Ma, T., Yan, Y. S., Liu, W. L., et al., 1996. Determinationof velocity field in the Tarim basin and its application. Oil Geophysical Prospecting, 31 (3): 382-393 (in Chinese with English abstract). [18] Sun, C., Martinez, R., 2002. Amplitude preserving3D pre-stack Kirchhoff time migration for V (z) and VTImedia. SEG Expanded Abstracts, 21: 1224-1227. [19] Taner, M. T., Al-Chalabi, M., 2005. A newtravel time esti-mation method for horizontal strata. SEG ExpandedAbstracts, 2273-2276. [20] Taner, M. T., Koehler, F., 1969. Velocity spectra-Digitalcomputer derivation applications of velocity functions. Geophysics, 34 (6): 859-881. doi: 10.1190/1.1440058 [21] Vail, P. R., 1988. Seismic stratigraphy interpretation proce-dure. AAPG Studies in Geology, 27: 1-10. [22] Vail, P. R., Mitchum, R. M., Thompson, S. Ⅲ., 1977. Globalcycles of relative changes of sea level. AAPG Memoir, 26: 51-212. [23] Wang, J. H., Wang, H., Zhao, Z. X., et al., 2003. Sequence stratigraphy in paleogeomorphy analysis: An examplefrom Tahe oilfield. Earth Science-Journal of China University of Geosciences, 28 (4): 425-430 (in Chinese with English abstract). [24] Wang, S. H., Liu, H. S., Zhang, Y. Y., et al., 2004. Researchon variable-velocity structure mapping and its applica-tion. Journal of Ocean University of China, 34 (1): 139-146 (in Chinese with English abstract). [25] Wei, W. B., Ye, G. F., Jin, S., et al., 2007. Three dimensional P-wave velocity structure of the crust of North China. Earth Science-Journal of China University of Ge-osciences, 32 (4): 441-452 (in Chinese with English abstract). [26] Xin, K. F., Wang, H. Z., Ma, Z. T., et al., 2005. Interactivevelocity analysis on CFP gathers. Oil Geophysical Pros-pecting, 40 (4): 386-390, 399 (in Chinese with English abstract). [27] Xu, H. D., 1993. The principle and methodology of sequencestratigraphy. PetroleumIndustry Press, Beijing (in Chinese). [28] Yuan, J. J., 2006. Application of layer-cake method to makestructure map and geological base. Geophysical Pros-pecting for Petroleum, 45 (3): 285-289 (in Chinese with English abstract). [29] Zhu, X. M., 2000. The sequence stratigraphy. PetroleumIn-dustry Press, Dongying (in Chinese). [30] 陈传仁, 周熙襄, 1999. 一种精细层速度反演方法. 物探化探计算技术, 21 (3): 212-215. doi: 10.3969/j.issn.1001-1749.1999.03.004 [31] 段云卿, 王彦春, 覃天, 等, 2007. 储层地震反演在辽河油田大民屯凹陷的应用. 地球科学—中国地质大学学报, 32 (4): 554-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200704020.htm [32] 洪太元, 蔡希源, 何治亮, 等, 2006. 准噶尔盆地腹部白垩系底部不整合特征. 新疆地质, 24 (3): 229-233. doi: 10.3969/j.issn.1000-8845.2006.03.004 [33] 纪有亮, 张世奇, 1996. 陆相断陷湖盆层序地层学. 北京: 石油工业出版社. [34] 贾振远, 蔡忠贤, 1997. 层序与旋回. 地球科学—中国地质大学学报, 22 (5): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205020.htm [35] 匡立春, 吕焕通, 齐雪峰, 等, 2005. 准噶尔盆地岩性油气藏勘探成果和方向. 石油勘探与开发, 32 (6): 32-37, 65. doi: 10.3321/j.issn:1000-0747.2005.06.008 [36] 李思田, 潘元林, 陆永潮, 等, 2002. 断陷湖盆隐蔽油藏预测及勘探关键技术—字精度地震基础上的层序地层学研究. 地球科学—中国地质大学学报, 27 (5): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205018.htm [37] 李杏莉, 刘文利, 马涛, 等, 1997. 新疆英丫区三维资料速度场研究与应用. 石油地球物理勘探, 32 (增刊): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ1997S1011.htm [38] 廖远涛, 张世民, 夏鹏远, 等, 2005. 东璞凹馅文东地区沙三段层序地层学特征. 地球科学—中国地质大学学报, 30 (2): 133-139. [39] 凌云, 刘得光, 黄国荣, 等, 2006. 石南地区田头屯河组沉积相研究. 新疆石油天然气, 2 (2): 19-22. doi: 10.3969/j.issn.1673-2677.2006.02.005 [40] 刘超颖, 王成祥, 赵波, 等, 2003. CFP层速度扫描建模方法. 石油物探, 42 (3): 294-297. doi: 10.3969/j.issn.1000-1441.2003.03.003 [41] 马涛, 严又生, 刘文利, 等, 1996. 塔里木盆地速度场的建立及应用. 石油地球物理勘探, 31 (3): 382-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ199603009.htm [42] 王家豪, 王华, 赵忠新, 等, 2003. 层序地层学应用于古地貌分析. 地球科学—中国地质大学学报, 28 (4): 425-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304011.htm [43] 王树华, 刘怀山, 张云银, 等, 2004. 变速成图方法及应用研究. 中国海洋大学学报, 34 (1): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200401023.htm [44] 魏文博, 叶高峰, 金胜, 等, 2007. 华北地区地壳P波三维速度结构. 地球科学—中国地质大学学报, 32 (4): 441-452. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200704002.htm [45] 辛可锋, 王华忠, 马在田, 等, 2005. CFP道集交互速度分析. 石油地球物理勘探, 40 (4): 386-390, 399. doi: 10.3321/j.issn:1000-7210.2005.04.009 [46] 徐怀大, 1993. 层序地层学原理. 北京: 石油工业出版社. [47] 袁井菊, 2006. 层叠法变速构造成图的地质基础及其应用. 石油物探, 45 (3): 285-289. doi: 10.3969/j.issn.1000-1441.2006.03.014 [48] 朱筱敏, 2000. 层序地层学. 东营: 石油工业出版社.