Characteristics, Well-Log Responses and Mechanisms of Overpressures within the Jurassic Formation in the Central Part of Junggar Basin
-
摘要: 准噶尔盆地腹部地区深层钻井揭示侏罗系发育异常高压系统.根据26口井的67个钻杆测试(DST) 和电缆测试(MDT) 数据, 实测砂岩异常高压揭示深度约在4470~6160m, 剩余压力约为11~57MPa, 压力系数为1.24~2.07, 砂岩段超压实测值主要分布在侏罗系, 少数出现在白垩系底部与侏罗系邻近地层, 1个超压实测值位于下三叠统, 实测超压砂岩样品的孔隙度和渗透率范围分别为3.20%~16.00%和0.02×10-3~14.40×10-3μm2;根据钻井、测井和测试资料的综合解释, 埋深在4430~6650m的深部侏罗系流体超压带, 钻井泥浆密度明显增加, 泥页岩和砂岩共同具有相对于正常趋势的异常高声波时差和低视电阻率测井响应特征; 超压系统顶界埋深可能不浅于4400m (地温约104℃), 有些钻井超压顶界可深达约6000m (地温约140℃), 且超压带顶界深度随侏罗系埋深的增加而增大; 钻井揭示的侏罗系超压带烃源岩镜质体反射率(Ro, %) 约为0.7%~1.3%, 超压带分布深度受控于侏罗系成熟烃源岩层的埋深且两者深度分布的变化具有相关性; 研究认为腹部地区已被充分压实的侏罗系异常高压成因主要与其含煤岩系干酪根热演化及油气共生有关, 即生烃增压; 物理模拟实验表明, 由于高孔隙流体压力可导致岩石骨架颗粒间有效应力的减小, 从而直接引起通过岩石的声波速度降低, 即出现高声波时差响应; 在超压地层温度条件下, 高压液态水的电离常数可能明显增加, 从而减小地层电阻率, 进一步开展此种现象的相关探索性研究可望对超压带低电阻率异常的原因给出新的解释.Abstract: The deep overpressured system occurs in the Jurassic Formation of the central area of Junggar basin.This has been confirmed by drill stem tests (DSTs) and modular dynamic formation tests (MDTs) with 67 measured formation pressures from 26 wells which reveal excessive pressures ranging from 11 MPa to 57 MPa with the pressure coefficients of 1.24 to 2.07 at depths between 4 470 m and 6 160 m.The measured overpressured values are mostly in the sandstone layers of Jurassic formation, only a few in the bottom of the Cretaceous formation and one in the Lower Triassic formation.The measured values of porosity and permeability of the overpressured sandstone samples range from 3.20% to 16.00% and 0.02×10-3 μm2 to 14.40×10-3 μm2 respectively.This fluid overpressured zone over depths of 4 430-6 650 m is coincident with marked increase of the density of drilling mud, as well as the response of overpressured shales and sandstones to high sonic transit times and low resistivity values relative to their normal trends.The observed data suggest that the burial depth of the top of magnitude overpressured zone may not be smaller than 4 400 m with a formation temperature of about 104 ℃, and the tops in some drilling wells are to reach as deep as about 6 000 m with a formation temperature of about 140 ℃, and the depth of the top of the deep overpressured zone changes with the burial depth of the Jurassic formation.The values of vitrinite reflectance (Ro, %) in the deep overpressured zone of Jurassic formation range from about 0.7% to 1.3%, which suggests that the variations of depth distribution of the overpressured zone are controlled by the burial depth of mature source-rocks of the Jurassic formation.This study indicates that the main origin of abnormally high pressures in the full-compacted Jurassic formation is generation-related oil and gas of the kerogen from the coal-bearing source-rocks.The physical simulation experiments show that the effective stress of rock framework reduces due to high pore fluid pressure, which can directly lead to the decrease of velocity of acoustic wave through the shale and sandstone rocks.As a result, the higher interval transit times respond to overpressuring rather than higher porosities anomaly due to compaction disequilibrium.Under the temperature of the overpressured formations, the ionization constant of high-pressure liquid water (near-critical water) may be increased, which is likely to decrease formation resistivity.Further study on this phenomenon is expected to offer a reasonable explanation for the cause of low formation resistivity in the observed overpressured zone.
-
图 8 不同围压条件下饱含水砂岩样品(中砂岩, 总孔隙度19.08%、有效孔隙度14.75%) 的纵波速度与孔隙流体压力和有效应力关系的物理模拟实验(实验温度20 ℃) 结果
Fig. 8. Profiles of relationships between P-wave velocity and pore fluid pressure/effective stress using water saturated sandstone samples (middle sandstone, with a total porosity of 19.08% and effective porosity of 14.75%) within different conditions of surrounding pressures with the temperature of 20 ℃ from the results of physical simulation experiments
表 1 准噶尔盆地腹部地区实测异常高压数据信息统计
Table 1. Measured data of overpressure and some related information in the study area
表 2 实测超压井段中砂岩的实测孔隙度和渗透率以及岩性特征统计
Table 2. Measured porosity and permeability of sandstone samples in the overpressured layers
表 3 准噶尔盆地腹部4口代表性井的超压顶界面的相关参数
Table 3. Parameters concerning the top of overpressure from the four wells in the central part of Junggar basin
-
[1] Asquith, G., Gibson, C., 1997. Basic well log analysis for geologists (third printing). AAPG, Tulsa, 41-44. [2] Chandler, K., Deng, F. H., Dillow-Angela, K., et al., 1997. Alkylation reactions in near-critical water inthe absenceof acid catalysts. Ind. Eng. Chem. Res. , 36 (12): 5175-5179. doi: 10.1021/ie9702688 [3] Chen, F. J., Wang, X. W., Wang, X. W., 2005. Prototype andtectonic evolution of the Junggar basin, northwestern China. Earth Science Frontiers, 12 (3): 77-89 (in Chinese with English abstract). [4] Chen, J. Y., Zhang, H., Zheng, H. F., et al., 2006. In situ visualization of pyrolysis of organic matter in high-temperature and high-pressure water-Taking kerogen andasphalt as an example. Petroleum Geology & Experiment, 28 (1): 73-77 (in Chinese with English abstract). [5] Chilingar, G. V., Serebryakov, V. A., Robertson, J. O., 2002. Origin and prediction of abnormal formation pres-sures. Elsevier Scientific Publishing Company, 123-150. [6] Eaton, B. A., 1972. Graphical method predicts geopressure worldwide. World Oil, 6: 51-56. [7] Eaton, B. A., 1976. Graphical method predicts geopressures worldwide. World Oil, 183 (1): 100-104. [8] Fertl, W. H., 1976. Abnormal formation pressures. Elsevier Scientific Publishing Company. [9] Fillippone, W. R., 1979. On the prediction of abnormallypressured sedimentary rocks from seismic data. OTC, 3662: 2667-2676. [10] Fillippone, W. R., 1982. Estimation of formation parametersand the prediction of overpressure from seismic data. Presented at the research symposium on geopressuresstudies, SEG Meeting, Dallas, TX, Paper R1.4, Oct., 17-21. [11] He, S., Middleton, M., 2002. Pressure seal and deep over-pressure modelling in the Barrow sub-basin, Northern Carnarvon basin of the North West Shelf, Australia. In: Keep, M., Moss, S. J., eds., The sedimentary basins ofwestern Australia, 3: 531-549. [12] Hermanrud, C., Wensaas, L., Teige, G. M. G., et al., 1998. Shale porosities from well logs on Haltenbanken (Off-shore Mid-Norway) show no influence of overpressu-ring. In: Law, B. E., Ul mishek, G. F., Slavin, V. I., eds., Abnormal pressures in hydrocarbon environ-ments. American Association of Petroleum Geologists Memoir, 70: 65-85. [13] Hunt, J. M., 1990. Generation and migration of petroleum from abnormally pressured fluid compart ments. AAPG Bulletin, 74 (1): 1-12. [14] Hunt, J. M., Whelan, J. K., Eglinton, L. B., et al., 1998. Re-lation of shale porosities, gas generation, and compac-tion to deep overpressures in the U. S. Gulf Coast. In: Law, B. E., Ul mishek, G. F., Slavin, V. I., eds., Abnormal pressures in hydrocarbon environments. American Association of Petroleum Geologists Memoir, 70: 87-104. [15] Jin, A. M., Cao, F. F., Lou, Z. H., et al., 2006. Distributionand origin of the super pressure in the Mahu-Penyi-jingximulti-source petroleum systems, Junggar basin. Journal of Zhejiang University (Sciences Edition), 33 (4): 469-474 (in Chinese with English abstract). [16] Krammer, P., Vogel, H., 2000. Hydrolysis of esters in sub-critical and supercritical water. J. Supercritical Fluids, 16 (3): 189-206. doi: 10.1016/S0896-8446(99)00032-7 [17] Kuhl mann, B., Arnett, E. M., Siskin, M., 2002. Classical or-ganic reactions in pure superheated water. J. Org. Chem. , 59 (11): 3098-3101. [18] Lee, Y. M., Deming, D., 2002. Overpressures in the Anadar-ko basin, southwestern Oklahoma: Static or dynamic? AAPG Bulletin, 86 (1): 145-160. [19] Li, M. H., Li, Z., Liao, J. D., 2005. Analysis of ground stressin the southern part of Jungger basin and discussions of the related issues. Xinjiang Geology, 23 (4): 343-346 (in Chinese with English abstract). [20] Li, Z. Q., Chen, G. S., Guo, J. Y., et al., 2001. Basic geologiccharacters of the abnormal formation overpressure inthe western part of southern fringe of Junggar basin. Petroleum Geology & Experiment, 23 (1): 47-51 (in Chinese with English abstract). [21] Liu, D. G., 1998. Over pressure origin and hydrocarbon poolforming mode of Maqiao uplift in Junggar basin. Petroleum Exploration and Development, 25 (1): 21-26 (in Chinese with English abstract). [22] Liu, X. F., Xie, X. N., Zhang, C., 2008. Characteristics andgeneration of the reservoir overpressure in Bozhong De-pression, Bohai Bay basin. Earth Science-Journal of China University of Geosciences, 33 (3): 337-341. doi: 10.3799/dqkx.2008.044 [23] Luo, X. R., Xiao, L. X., Li, X. Y., et al., 2004. Overpressure distribution and affecting factors in southern margin of Junggar basin. Earth Science-Journal of China University of Geosciences, 29 (4): 404-412 (in Chinese with English abstract). [24] Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Over-pressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar basin, northwestern China. AAPG Bulletin, 91 (8): 1123-1139. doi: 10.1306/02260706035 [25] Lü, X. Y., He, L., Zheng, Z. S., et al., 2003. Green chemicalprocesses in near critical water. Chemical Industry and Engineering Progress, 22 (5): 477-481 (in Chinese with English abstract). [26] Lü, X. Y., Zheng, Z. S., He, L., et al., 2004. An apparatusfor determination of mutual solubilities in near-criticalwater. Journal of Chemical Engineering of Chinese Universities, 18 (5): 537-541 (in Chinese with Englishabstract). [27] Magara, K., 1968. Compaction and migration of fluids in Mi-ocene mudstone, Nagaoka plain, Japan. AAPG Bulletin, 52 (12): 2466-2501. [28] Magara, K., 1978. Compaction and fluid migration-practicalpetroleum geology. Elsevier Scientific Publishing Company. [29] Marshall, W. L., Frank, E. U., 1981. Ion product of watersubstance, 0-1000℃, 1-10000bars, newinternational formulation and its background. J. Phys. Chem. Ref. Data, (10): 295-304. [30] Martinsen, R. S., 1994. Summary of published literature onanomalous pressures: Implications for the study of pres-sure compart ments. In: Ortoleva, P. J., ed., Basin com-part ments and seals. American Association of Petroleum Geologists Memoir, 61: 27-38. [31] Qu, J. X., Zha, M., 2003. Origin and characteristics of abnor-mal pressure in the Junggar basin. Petroleum Geology & Experiment, 25 (4): 333-336 (in Chinese with Eng-lish abstract). [32] Slavin, V. I., Smirnova, E. M., 1998. Abnormally high for-mation pressure: Origin, prediction, hydrocarbon fielddevelopment, and ecological problems. In: Law, B. E., Ul mishek, G. F., Slavin, V. I., eds., Abnormal pres-sures in hydrocarbon environments. American Associa-tion of Petroleum Geologists Memoir, 70: 105-114. [33] Swarbrick, R. E., Osborne, M. J., 1998. Mechanisms thatgenerate abnormal pressures: An overview. In: Law, B. E., Ul mishek, G. F., Slavin, V. I., eds., Abnormalpressures in hydrocarbon environments. American Association of Petroleum Geologists Memoir, 70: 13-34. [34] Teige, G. M. G., Hermanrud, C., Wensaas, L., et al., 1999. The lack of relationship between overpressure and po-rosity in North Sea and Haltenbanken shales. Marineand Petroleum Geology, 16 (4): 321-335. doi: 10.1016/S0264-8172(98)00035-X [35] Wang, Z. L., Sun, M. L., Geng, P., et al., 2003. The devel-opment features and formation mechanisms of abnorma lhigh formation pressurein southern Junggar region. Petroleum Exploration and Development, 30 (1): 32-34 (in Chinese with English abstract). [36] Wu, K, Y., Zha, M., Zhong, J. H., 2006. Distribution andevolution of overpressure systems in the Junggar basin. Chinese Journal of Geology, 41 (4): 636-647 (in Chinese with English abstract). [37] Wu, Q. F., 1986. Structural evolution and prospects of Jung-gar basin. Xinjiang Geology, 4 (3): 1-19 (in Chinese with English abstract). [38] Wu, X. Z., Li, C., 1994. Abnormal pressure and hydrocarbon accumulationin Mosuowan area of hinterland of Jung-gar basin. Xinjiang Petroleum Geology, 15 (3): 208-213 (in Chinese with English abstract). [39] Wyllie, M. R. J., Gregory, A. R., Gardner, G. H. F., 1958. An experimental investigation of factors affecting elasticwave velocities in porous media. Geophysics, 23 (3): 459-493. doi: 10.1190/1.1438493 [40] Yang, Z., He, S., He, Z. L., et al., 2008. Study on overpres-sure stratum distribution and its relationship with petroleum accumulation in central part of Junggar basin. Acta Petroleum Sinica, 29 (2): 199-205, 212 (in Chinese with English abstract). [41] Yang, Z., He, S., Wu, H. Z., et al., 2006. Geophysical re-sponse relationship study on characteristics and mecha-nisms of overpressure in southern Junggar basin. West China Petroleum Geosciences, 2 (3): 286-288, 293 (in Chinese with English abstract). [42] Yardley, G. S., Swarbrick, R. E., 2000. Lateral transfer: Asource of additional overpressure? Marine and Petroleum Geology, 17 (4): 523-537. doi: 10.1016/S0264-8172(00)00007-6 [43] Zeng, G. C., Wang, F. Z., Zheng, J. P., et al., 2002. Study ofpyroxene in Junggar basin basement volcanic rock andits indicator to basin basement characteristics. Earth Science-Journal of China University of Geosciences, 27 (1): 13-18 (in Chinese with English abstract). [44] Zha, M., Zhang, W. H., Qu, J. X., 2000. The character andorigin of overpressure and its explorational significancein Junggar basin. Petroleum Exploration and Develop-ment, 27 (2): 31-35 (in Chinese with English abstract). [45] Zhang, W. H., Zha, M., Qu, J. X., 2004. Overpressure andmechanisms of hydrocarbon accumulationin Tertiary ofsouthern Junggar basin. Journal of the University of Petroleum, China (Edition of Natural Science), 28 (1): 10-12 (in Chinese with English abstract). [46] Zhang, Y. G., 2003. The abnormal pressure researches incentral depression of Junggar basin. Journal of Xin-jiang Petroleum Institute, 15 (4): 26-29 (in Chinese with English abstract). [47] Zhao, G. P., 2003. Overpressure and its relation to petroleum accumulationin southern edge of Junggar basin. Oil & Gas Geology, 24 (4): 327-331 (in Chinese with Englishabstract). [48] Zou, H. Y., Hao, F., Zhang, B. Q., et al., 2006. Petrologicfeature and sealing mechanismfor the pressure seal inthe center of Junggar basin. Acta Petrologica Sinica, 22 (8): 2213-2219 (in Chinese with English abstract). [49] Zuo, L. P., Li, T., Tian, S. M., 1999. Superrficial views onthe anclent basement problem in Zhunger basin. Geophysical Prospecting for Petroleum, 38 (3): 112-117 (in Chinese with English abstract). [50] 陈发景, 汪新文, 汪新伟, 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12 (3): 77-89. doi: 10.3321/j.issn:1005-2321.2005.03.010 [51] 陈晋阳, 张红, 郑海飞, 等, 2006. 高温高压下水中有机质降解过程的原位观测—以干酪根和沥青质为例. 石油实验地质, 28 (1): 73-77. doi: 10.3969/j.issn.1001-6112.2006.01.014 [52] 金爱民, 曹飞凤, 楼章华, 等, 2006. 准噶尔盆地玛湖—P1井西复合含油气系统地层高压分布与成因. 浙江大学学报(理学版), 33 (4): 469-474. doi: 10.3321/j.issn:1008-9497.2006.04.026 [53] 李民河, 李震, 廖健德, 2005. 准噶尔盆地南缘地应力分析及相关问题探讨. 新疆地质, 23 (4): 343-346. doi: 10.3969/j.issn.1000-8845.2005.04.005 [54] 李忠权, 陈更生, 郭冀义, 等, 2001. 准噶尔盆地南缘西部地层异常高压基本地质特征. 石油实验地质, 23 (1): 47-51. doi: 10.3969/j.issn.1001-6112.2001.01.009 [55] 刘得光, 1998. 准噶尔盆地马桥凸起异常高压成因及油气成藏模式. 石油勘探与开发, 25 (1): 21-26. doi: 10.3321/j.issn:1000-0747.1998.01.006 [56] 刘晓峰, 解习农, 张成, 2008. 渤海湾盆地渤中坳陷储层超压特征与成因机制. 地球科学—中国地质大学学报, 33 (3): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803007.htm [57] 罗晓容, 肖立新, 李学义, 等, 2004. 准噶尔盆地南缘中段异常压力分布及影响因素. 地球科学—中国地质大学学报, 29 (4): 404-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200404004.htm [58] 吕秀阳, 何龙, 郑赞胜, 等, 2003. 近临界水中的绿色化工过程. 化工进展, 22 (5): 477-481. doi: 10.3321/j.issn:1000-6613.2003.05.008 [59] 吕秀阳, 郑赞胜, 何龙, 等, 2004. 近临界水中溶解度测定装置的研制. 高校化学工程学报, 18 (5): 537-541. doi: 10.3321/j.issn:1003-9015.2004.05.001 [60] 曲江秀, 查明, 2003. 准噶尔盆地异常压力类型及成因探讨. 石油实验地质, 25 (4): 333-336. doi: 10.3969/j.issn.1001-6112.2003.04.003 [61] 王震亮, 孙明亮, 耿鹏, 等, 2003. 准南地区异常地层压力发育特征及形成机理. 石油勘探与开发, 30 (1): 32-34. doi: 10.3321/j.issn:1000-0747.2003.01.008 [62] 吴孔友, 查明, 钟建华, 2006. 准噶尔盆地超压系统分布及其演化. 地质科学, 41 (4): 636-647. doi: 10.3321/j.issn:0563-5020.2006.04.007 [63] 吴庆福, 1986. 准噶尔盆地构造演化与找油领域. 新疆地质, 4 (3): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198603001.htm [64] 吴晓智, 李策, 1994. 准噶尔盆地莫索湾地区异常地层压力与油气聚集. 新疆石油地质, 15 (3): 208-213. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD403.002.htm [65] 杨智, 何生, 何治亮, 等, 2008. 准噶尔盆地腹部超压层分布与油气成藏. 石油学报, 29 (2): 199-205, 212. doi: 10.3321/j.issn:0253-2697.2008.02.008 [66] 杨智, 何生, 武恒志, 等, 2006. 准噶尔盆地南缘超压地球物理特征与成因响应关系研究. 中国西部油气地质, 2 (3): 286-288, 293. [67] 曾广策, 王方正, 郑建平, 等, 2002. 准噶尔盆地基底火山岩中的辉石及其对盆地基底性质的示踪. 地球科学—中国地质大学学报, 27 (1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201002.htm [68] 查明, 张卫海, 曲江秀, 2000. 准噶尔盆地异常高压特征、成因及勘探意义. 石油勘探与开发, 27 (2): 31-35. doi: 10.3321/j.issn:1000-0747.2000.02.009 [69] 张卫海, 查明, 曲江秀, 2004. 准噶尔盆地南缘古近系-新近系异常高压系统与油气成藏机理. 石油大学学报(自然科学版), 28 (1): 10-12. doi: 10.3321/j.issn:1000-5870.2004.01.004 [70] 张勇刚, 2003. 准噶尔盆地中央坳陷异常压力研究. 新疆石油学院学报, 15 (4): 26-29. doi: 10.3969/j.issn.1673-2677.2003.04.007 [71] 赵桂萍, 2003. 准噶尔盆地南缘异常高压及其与油气成藏的关系. 石油与天然气地质, 24 (4): 327-331. doi: 10.3321/j.issn:0253-9985.2003.04.004 [72] 邹华耀, 郝芳, 张伯桥, 等, 2006. 准噶尔盆地中部超压封闭层的岩石学特征与封闭机理. 岩石学报, 22 (8): 2213-2219. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608010.htm [73] 左龙凭, 李铁, 田素敏, 1999. 对准噶尔盆地古老基底问题的一些浅见. 石油物探, 38 (3): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT199903015.htm