Role of Sodium Ion on Stability of the Crystal Structure of Marine 10Å-Manganates
-
摘要: 10Å-水锰矿是海洋成岩型铁锰结核和很多陆生锰矿的主要矿物, 铜、镍等过渡金属元素对于10Å-水锰矿结构的稳定起着重要的作用, 而对于碱金属元素钠离子在其中的地球化学行为则少有涉及.利用取自东太平洋海底的成岩型铁锰结核, 借助化学方法, 利用矿物学和晶体化学的理论对碱金属元素钠离子在成岩型铁锰结核中的存在状态以及对结核组成矿物10Å-水锰矿结构的影响进行了研究.结果显示, 10Å-水锰矿中钠离子可以被弱酸析出并且会导致其结构的破坏, 使得10Å-水锰矿转换成7-水锰矿; 析出钠离子并且结晶状态变差的10Å-水锰矿吸附钠离子后, 其结晶状态可明显好转并且部分非10相转化为10Å-水锰矿, 但是这种结构的破坏在自然条件下不能完全恢复.因此, 钠离子对于10Å-水锰矿结构的稳定性起着非常重要的作用.Abstract: The 10Å-manganate is main mineral component of the marine diagenetic nodule and terraneous manganese. The previous study has poved that the transition metals—copper, nickel paly an improtant role in the stability of 10Å-manganates. However, the geochemical behavior of sodium ions is seldom invovled in the previous researches. The role of sodium ions on the stability of 10Å-manganates was investigated in terms of the selective dissolution experiments and adsorption experiments as well as crystal chemistry and mineralogy by using the marine diagenetic nodule recovered near the equatorial East Pacific. Sodium ions in 10Å-manganates can be extracted by weak acidic and 10Å-manganates transform into 7Å-manganates. On the other hand, crystallinity of the samples whose sodium ions were extracted turned better and some non-10Å-manganates phases turned into 10Å-manganates through the uptake of sodium. The destructive structure of 10Å-manganates can't recover thoroughly from the uptake of sodium ions under natural conditions. Sodium ions play an important role in the stability of 10Å-manganates of marine diagenetic nodule.
-
Key words:
- marine diagenetic nodule /
- 10Å-manganates /
- sodium ion /
- crystal structure /
- stability
-
表 1 成岩型结核全样和分层样品的常量、微量元素的化学分析结果(%)
Table 1. Concentrations of the major and minor elements of the diagenetic nodule and the subsamples
表 2 成岩型结核分层样品的选择性提取结果(10-6)
Table 2. The selective dissolution experiment results of the subsamples of the diagenetic nodule
表 3 样品在处理前后10Å、5Å衍射峰和7Å衍射峰的积分面积比值
Table 3. Ratios of the integral area of the peaks of 10Å and 5Å of 10Å-manganates to the 7Å of 7Å-manganates before and after the chemical treatments
-
[1] Bilinski, H., Giovanoli, R., Usui, A., et al., 2002. Characterization of Mn oxides in cemented streambed crusts fromPinal Creek, Arizona, U. S. A., and in hot-spring deposits from Yuno-Taki Falls, Hokkaido, Japan. American Mineralogist, 87: 580-591. doi: 10.2138/am-2002-0423 [2] Dyer, A., Pillinger, M., Newton, J., et al., 2000. Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12: 3798-3804. doi: 10.1021/cm001142v [3] Feng, X. H., Tan, W. F., Liu, W. F., et al., 2005. Hydrothermal synthesis of todorokite and its influencing factors. Earth Science-Journal of China University of Geosciences, 30 (3): 347-352 (in Chinese with Englishabstract). doi: 10.1017/S0020818300017379 [4] Feng, X. W., Qian, J. C., Zhang, P. Z., 2003. The study of phase change of 1 nm manganatein polymetallic nodules and its main controlling factors. Acta Mineralogica Sinica, 23 (2): 109-114 (in Chinese with English ab-stract). doi: 10.1016/S0955-2219(02)00073-0 [5] Jiang, X. J., Lin, X. H., Yao, D., et al., 2007. Geochemistry of lithium in marine ferromanganese oxide deposits. Deep-Sea Research Part I, 54 (1): 85-98. doi: 10.1016/j.dsr.2006.10.004 [6] Lei, G., 1996. Crystal structures and metal uptake capacity of 10Å-manganates: An overview. Marine Geology, 133 (1-2): 103-112. doi: 10.1016/0025-3227(96)00010-2 [7] Lei, G., Bostr m, K., 1995. Mineralogical control on transition metal distributions in marine manganese nodules. Marine Geology, 123 (3-4): 253-261. doi: 10.1016/0025-3227(95)00022-Q [8] Matin-Barajas, A., Lallier-Verges, E., Leclaire, L., 1991. Characteristics of manganese nodules from the Central Indian basin: Relationship with the sedi mentary environment. Marine Geology, 101 (1-4): 249-265. doi: 10.1016/0025-3227(91)90074-E [9] Mellin, T. A., Lei, G., 1993. Stabilization of 10Å-manganates by interlayer cations and hydrothermal treatment: Implications for the mineralogy of marine manganese concretions. Marine Geology, 115 (1-2): 67-83. doi: 10.1016/0025-3227(93)90075-7 [10] Post, J. E., 1999. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA. , 96: 3447-3454. doi: 10.1073/pnas.96.7.3447 [11] Post, J. E., Heaney, P. J., Hanson, J., 2003. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist, 88: 142-150. doi: 10.2138/am-2003-0117 [12] Qian, J. C., Chu, F. Y., Feng, X. W., 2004. Study on the synthesis of 1 nm manganate and its cation substitution characteristics. Acta Mineralogica Sinica, 24 (4): 334-340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200404003.htm [13] Shen, Y. F., Zerger, R. P., DeGuzman, R. N., et al., 1993. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 260 (5107): 511-515. doi: 10.1126/science.260.5107.511 [14] Usui, A., Mellin, T. A., Nohara, M., et al., 1989. Structuralstability of marine 10Å-manganates from the Ogasawara (Bonin) Arc: Implication for low-temperature hydrothermal activity. Marine Geology, 86 (1): 41-56. doi: 10.1016/0025-3227(89)90017-0 [15] Usui, A., Nishimura, A., Mita, N., 1993. Composition and growth history of surficial and buried manganese nodules in the Penrhyn basin, Southwestern Pacific. Marine Geology, 114 (1-2): 133-153. doi: 10.1016/0025-3227(93)90044-V [16] Zhu, X. Y., Ye, Y., Shen, Z. Y., 2004. Application prospects and investigation progress on manganese nodules used in functional material. Nonferrous Metals, 56 (4): 61-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YOUS200404014.htm [17] 冯雄汉, 谭文峰, 刘凡, 等, 2005. 热液条件下钙锰矿的合成及其影响因素. 地球科学——中国地质大学学报, 30 (3): 347-352. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503011.htm [18] 冯旭文, 钱江初, 张培志, 2003. 大洋多金属结核中1nm锰矿相的相变及其主要控制因素研究. 矿物学报, 23 (2): 109-114. doi: 10.3321/j.issn:1000-4734.2003.02.004 [19] 钱江初, 初凤友, 冯旭文, 2004.1nm锰矿相的人工合成及其金属阳离子交换特性. 矿物学报, 24 (4): 334-340. doi: 10.3321/j.issn:1000-4734.2004.04.003 [20] 朱晓燕, 叶瑛, 沈忠悦, 2004. 大洋锰结核在功能性材料领域的应用前景与研究进展. 有色金属, 56 (4): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200404014.htm