• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    非负矩阵分解方法在水系沉积物地球化学数据处理中应用

    张生元 黄锐 徐德义 成秋明

    张生元, 黄锐, 徐德义, 成秋明, 2009. 非负矩阵分解方法在水系沉积物地球化学数据处理中应用. 地球科学, 34(2): 347-352.
    引用本文: 张生元, 黄锐, 徐德义, 成秋明, 2009. 非负矩阵分解方法在水系沉积物地球化学数据处理中应用. 地球科学, 34(2): 347-352.
    ZHANG Sheng-yuan, HUANG Rui, XU De-yi, CHENG Qiu-ming, 2009. Weighted Weights of Evidence and Stepwise Weights of Evidence and Their Applications in Sn-Cu Mineral Potential Mapping in Gejiu, Yunnan Province, China. Earth Science, 34(2): 347-352.
    Citation: ZHANG Sheng-yuan, HUANG Rui, XU De-yi, CHENG Qiu-ming, 2009. Weighted Weights of Evidence and Stepwise Weights of Evidence and Their Applications in Sn-Cu Mineral Potential Mapping in Gejiu, Yunnan Province, China. Earth Science, 34(2): 347-352.

    非负矩阵分解方法在水系沉积物地球化学数据处理中应用

    基金项目: 

    国家自然科学基金重点项目 40638041

    地质调查项目 121201063390110

    地质过程与矿产资源国家重点实验室开放课题 GPMR200803

    国家863项目 2006AA06Z115

    详细信息
      作者简介:

      张生元(1961-), 男, 博士, 教授, 主要从事矿产资源定量评价方法、科研开发和教学工作.E-mail: zhangsh3002@126.com

    • 中图分类号: P628

    Weighted Weights of Evidence and Stepwise Weights of Evidence and Their Applications in Sn-Cu Mineral Potential Mapping in Gejiu, Yunnan Province, China

    • 摘要:

      鉴于水系沉积物地球化学数据可以表示为非负矩阵, 这使得利用非负矩阵分解(NMF) 方法处理该类数据成为可能.介绍了非负矩阵分解方法的基本原理和方法, 讨论了基于非负矩阵分解方法处理水系沉积物地球化学数据的可能和效果.以个旧水系沉积物地球化学数据为例, 运用NMF方法和主成分分析(PCA) 方法对其进行异常分析, 并对这两种方法的处理结果进行了比较, 发现NMF方法对于处理水系沉积物地球化学数据是一种有效的方法.尽管这两种方法各自有其优越性, 但就本实例数据而言, NMF方法优于PCA方法.

       

    • 图  1  NMF方法r=1, 2, 3时6个基向量分别取对数后的6个图层

      a.r=1时的第一个基向量取对数; b.r=2时的第一个基向量取对数; c.r=3时的第一个基向量取对数; d.r=2时的第二个基向量取对数; e.r=3时的第二个基向量取对数; f.r=3时的第3个基向量取对数

      Fig.  1.  Six basis vectors obtained using NMF when r=1, 2, 3

      图  2  主成分分析的3个主成分的因子载荷

      Fig.  2.  Factor loading on three principal components

      图  3  主成分分析得到的3个主成分的因子得分

      Fig.  3.  Scores of three principal components

      a. log(PCA1+0. 7);b. log(PCA2 +7);c. log(PCA3+ 7)

      表  1  r=1, 2, 3时NMF权值矩阵

      Table  1.   Encodings using NMF when r=1, 2, 3

      表  2  NMF基向量和PCA的3个主成分之间的相关系数

      Table  2.   Correlations among six basis vectors using NMF and three principal components using PCA

    • [1] Cheng, Q. M., Zhao, P. D., Chen, J. G., et al., 2009. Application of singularity the oryin prediction of tin and coppermineral deposits in Gejiu district, Yunnan, China: Weak information extraction and mixing information decomposition. Earth Science—Journal of China University of Geosciences, 34 (2): 232-242 (in Chinese with Eng-lish abstract). doi: 10.3799/dqkxzx.2009.021
      [2] Donoho, D., Stodden, V., 2004. When does non-negative matrix factorization give a correct decomposition into parts? In: Thrun, S., Saul, L., Scholkopf, B., eds., Advances in neural information processing systems16. MIT Press, Cambridge, MA.
      [3] Feng, T., Li, S., Shum, H., et al., 2002. Local non-negative matrix factorization as a visual representation. In: Proceedings of the2ndinternational conference on development and learning. IEEE, Cambridge. U. K., 178-183. DOI: 10.1109/DEVLRN.2002.1011835.
      [4] Guillamet, D., Bressan, M., Vitria, J., 2001. A weighted non-negative matrix factorization for local representations. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition V1, Kauai, HI, 942-947. DOI: 10.1109/CVPR.2001.990629.
      [5] Guillamet, D., Vitria, J., Schiele, B., 2003. Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognition Letters, 24 (14): 2447-2454. doi: 10.1016/S0167-8655(03)00089-8
      [6] Juvela, M., Lehtinen, K., Paatero, P., 1994. The use of positive matrix factorization in the analysis of molecular line spectra from the thumbprint nebula. In: Clemens, D. P., Barvainis, R., eds., Clouds, cores, and low mass star. ASP Conference Series, 65: 176-180.
      [7] Juvela, M., Lehtinen, K., Paatero, P., 1996. The use of positive matrix factorization in the analysis of molecular linespectra. Mon. Not. R. Astron. Soc. , 280: 616-626. https://ui.adsabs.harvard.edu/abs/1996MNRAS.280..616J/abstract
      [8] Lee, D. O., Seung, H. S., 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401: 788-791. doi: 10.1038/44565
      [9] Lee, D., Seung, H., 2000. Algorithms for non-negative matrix factorization. In: Leen, T., Dietterich, T., Tresp, V., eds., Advances in neural information processing systems. MIT Press, Cambridge, MA, 556-562.
      [10] Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37 (1): 23-35. doi: 10.1016/S0169-7439(96)00044-5
      [11] Paatero, P., Tapper, U., 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5 (2): 111-126. doi: 10.1002/env.3170050203
      [12] Wei, L., 2004. Blind sources separation based on non-negative matrix factorization. Electronics Optics & Control, 11 (2): 38-41, 53 (in Chinese with English abstract).
      [13] Xu, W., Liu, X., Gong, Y., 2003. Document-clustering based on non-negative matrix factorization. In: Proceedings ofSIGIR'03, July28-August1.267-273, Toronto, CA.
      [14] 成秋明, 赵鹏大, 陈建国, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学——中国地质大学学报, 34 (2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902001.htm
      [15] 魏乐, 2004. 基于非负矩阵分解算法进行盲信号分离. 电光与控制, 11 (2): 38-41, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ200402011.htm
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  3622
    • HTML全文浏览量:  93
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2009-01-16
    • 刊出日期:  2009-03-25

    目录

      /

      返回文章
      返回