[1] |
Agterberg, F. P., 1989. LOGDIA-FORTRAN 77 programs for logistic regression with diagnostics. Computer & Geosciences, 15 (4): 599-614.
|
[2] |
Agterberg, F. P., Bonham-Carter, G. F., 2005. Measuring performance of mineral-potential maps. Natural Resources Research, 14 (1): 1-18. doi: 10.1007/s11053-005-4674-0
|
[3] |
Araujo, C. C., Macedo, A. B., 2002. Multicriteria geologicaldata analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira valley metallogenic province, Brazil. Natural Resources Research, 11 (1): 29-44. doi: 10.1023/A:1014235703541
|
[4] |
Bath, M., 1974. Special analysis in geophysics: Developments in solid earth geophysics 7. Elsevier Scientific Publishing Company, Amsterdam-Oxford-York.
|
[5] |
Bonham-Carter, G. F., 1994. Geographic information systems for geoscientists: Modelling with the GIS. Pergamon, Ontario.
|
[6] |
Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F., 1989. Weights of evidence modeling: A new approach tomapping mineral potential. Statistical Applications inEarth Sciences, 89 (9): 171-183.
|
[7] |
Botbol, J. M., 1971. An application of characteristic analysis to mineral exploration. In: Proceedings of 9th International Symposium on Techniques for Decision-Makingin the Mineral Industry (Montreal, Canada). Special volume, 12: 92-99.
|
[8] |
Brown, W. M., Gedeon, T. D., Groves, D. I., 2003. Use ofnoise to augment training data: Aneural network method of mineral-potential mapping in regions of limited known deposit examples. Natural Resources Research, 12 (2): 141-152. doi: 10.1023/A:1024218913435
|
[9] |
Carranza, E. J. M., 2004. Weights of evidence modeling ofmineral potential: A case study using small number ofprospects, Abra, Philippins. Natural Resources Research, 13 (3): 173-188. doi: 10.1023/B:NARR.0000046919.87758.f5
|
[10] |
Chen, Y. Q., Chen, J. G., Wang, X. Q., et al., 2008. Quantitative integrated assessment techniques for mineral resources based on GIS. Geological Publishing House, Beijing (in Chinese).
|
[11] |
Chen, Y. Q., Huang, J. N., Zhang, S. Y., 2007a. Application of multi-fractal filtering in geochemistry data decomposing—A case study fromthe south region of "Sanjiangore-forming belt", south-western China. In: Bernd, M., ed., Proceedings of Fifth Decennial International Conference on Mineral Exploration, Exploration07, Volume two, Toronto, 985-988.
|
[12] |
Chen, Y. Q., Wang, X. Q., Chen, J. G., et al., 2007b. GISbased integrated quantitative assessments of mineral re-sources. Geological Bulletin of China, 26 (2): 141-149 (in Chinese with English abstract). https://www.researchgate.net/publication/288995776_GIS-based_integrated_quantitative_assessments_of_mineral_resources
|
[13] |
Chen, Y. Q., Xia, Q. L., Wang, X. Q., et al., 2007c. Application of the weight-of-evidence method in mineral re-sources in the southern segment of the"Sanjiang metal-logenic zone", southwestern China. Geology in China, 34 (1): 132-141 (in Chinese with English abstract).
|
[14] |
Chen, Y. Q., Liu, H. G., 2001. A preliminary view on digitalpattern for mineral exploration based geoanomaly. Earth Science—Journal of China University of Geo-sciences, 26 (2): 129-134 (in Chinese with English abstract).
|
[15] |
Chen, Y. Q., Xia, Q. L., Liu, H. G., 2000. Delineation of potential mineral resources region based on geo-anomalyunit. Journal of China University of Geosciences, 11 (2): 158-163.
|
[16] |
Chen, Y. Q., Zhang, S. Y., Xia, Q. L., et al., 2006. Application of multi-fractal filtering to extraction of geochemical anomalies from multi-geochemical backgrounds: Acase study of the southern section of "Sanjiang ore-forming zone", southwestern China. Earth Science—Journal of China University of Geosciences, 31 (6): 861-866 (in Chinese with English abstract).
|
[17] |
Chen, Y. Q., Zhao, P. D., 1997. The delineated methods ofgeological anomaly units and its application in the statistical predication of gold deposits of large scale. In: Zhao, P. D., et al., eds., Proc. 30th Int'l. Geo. Congr. (Volume25), Mathematical Geology and Geoinformat-ics, VSP, 23-32.
|
[18] |
Chen, Y. Q., Zhao, P. D., Chen, J. G., et al., 2001. Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in westernShangdong uplift terrain, eastern China. Natural Resources Research, 10 (1): 35-49. doi: 10.1023/A:1011581414877
|
[19] |
Cheng, Q. M., 1995. The perimeter-area fractal model and its application in geology. Mathematical Geology, 27 (7): 64-77.
|
[20] |
Cheng, Q. M., 1999. Multifractality and spatial statistics. Computer and Geosciences, 25 (10): 8-25. https://www.sciencedirect.com/science/article/pii/S0098300499000606
|
[21] |
Cheng, Q. M., 2003. Non-linear mineralization model and in-formation processing methods for prediction of uncon-ventional mineral resources. Earth Science—Journal ofChina University of Geosciences, 28 (4): 1-10 (in Chinese with English abstract).
|
[22] |
Cheng, Q. M., 2004a. A new model for quantifying aniso-tropic scale invariance and for decomposition of mixingpatterns. Mathematical Geology, 36 (3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a
|
[23] |
Cheng, Q. M., 2004b. GeoDAS Ⅲ user'guide & exercisemanual. York University, Canada.
|
[24] |
Cheng, Q. M., 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth Science—Journalof China University of Geosciences, 31 (3): 337-348 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200603008.htm
|
[25] |
Cheng, Q. M., 2007. Singular mineralization process and min-eral resources quantitative prediction: New theories and methods. Earth Science Frontiers, 14 (5): 42-53 (inChinese with English abstract).
|
[26] |
Cheng, Q. M., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40 (5): 503-532. doi: 10.1007/s11004-008-9172-6
|
[27] |
Cheng, Q. M., Agterberg, F. P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8 (1): 27-35. doi: 10.1023/A:1021677510649
|
[28] |
Cheng, Q. M., Chen, Z. J., Khaled, A., 2007. Application of fuzzy weights of evidence method in mineral resource assessment for gold in Zhenyuan district, Yunnan Province, China. Earth Science—Journal of China University of Geosciences, 32 (2): 175-184 (in Chinese withEnglish abstract).
|
[29] |
Cheng, Q. M., Xu, Y. G., Grunsky, E., 2000. Integrated spatial and spectrum analysis for geochemical anomaly separation. Nature Resources Research, 9 (1): 43-56. doi: 10.1023/A:1010109829861
|
[30] |
Chung, C. F., Agterberg, F. P., 1980. Regression models for estimating mineral resources from geological map data. Mathematical Geology, 12 (5): 473-488. doi: 10.1007/BF01028881
|
[31] |
Gorelov, D. A., 1982. Quantitative characteristics of geologic anomalies in assessing ore capacity. Internal. GeologyRew. , 4: 457-465.
|
[32] |
Griffin, W. R., 1949. Residual gravity in theory and practice. Geophysics, 14 (1): 39-56. doi: 10.1190/1.1437506
|
[33] |
Hanmes, T., 2006. Theory and practice in mathematical geology—Introduction and discussion. Mathematical Geology, 38 (6): 659-665.
|
[34] |
Harris, D. P., Pan, G., 1999. Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8: 93-109. doi: 10.1023/A:1021886501912
|
[35] |
Harris, D. P., Zurcher, L., Stanley, M., et al., 2003. A comparison analysis of favorability mapping by the weights of evidence, and probabilistic neural networks, discriminant analysis, and logistic regression. Natural ResourcesResearch, 12 (4): 241-255. doi: 10.1023/B:NARR.0000007804.27450.e8
|
[36] |
Hinze, W. J., 1990. Applied effect of regional gravitational and magnetic data in geology. Translated by Chen, W. X., et al. . Geological Publishing House, Beijing (in Chinese).
|
[37] |
Hu, G. D., Chen, J. G., Chen, S. Y., 2000. Metallic mineralresources assessment and analysis systemdesign. Journal of China University of Geosciences, 11 (3): 308-311.
|
[38] |
Huang, J. N., Liu, H. G., Zhao, P. D., 2008. Application of multi-fractal filtering to extract Cu, Ni, Au anomalies of the East Tianshan ore-forming belt, north-western China. The 33rd International Geological Congress, Oslo (CD Abstract).
|
[39] |
Huang, N. E., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Society Lond., A454: 903-995. doi: 10.1098/rspa.1998.0193
|
[40] |
Kay, M., Dimitrakopoulos, R., 2000. Integrated interpolation methods for geophysical data: Application to mineral exploration. Natural Resources Research, 9 (1): 53-64.
|
[41] |
Koike, K., Matsuda, S., Suzuki, T., et al., 2002. Neural net-work-based estimation of principal metal contents in theHokuroku district, northern Japan, for explorationKuroko-type deposits. Natural Resources Research, 11 (2): 135-156. doi: 10.1023/A:1015520204066
|
[42] |
Krige, D. G., 1966. Two-dimensional weighted moving aver-age trend surfaces for ore evaluation. Jour. South African Inst. Mining and Metallurgy, 66: 13-38.
|
[43] |
Li, D. R., Wang, S. L., Li, D. Y., 2006. Spatial data mining theories and applications. Science Press, Beijing (in Chinese).
|
[44] |
Li, Q. M., Cheng, Q. M., 2004. Fractal singular-value (eginvalue) decomposition method for geophysical and geochemical anomaly reconstruction. Earth Science—Journal of China University of Geosciences, 29 (1): 109-118 (in Chinese with English abstract). https://www.researchgate.net/publication/284672230_Fractal_singular-value_eigen-value_decomposition_method_for_geophysical_and_geochemical_anomaly_reconstruction
|
[45] |
Lovejoy, S., 2005. Multifracal simulation of the Earth's surface and interior: Anisotropic singularities and morphology. In: Cheng, Q. M., et al., eds., Proceedings ofIAMG'2005: GIS and Spatial Analysis. China Universi-ty of Geosciences Press, Wuhan, 37-54.
|
[46] |
Matheron, G., 1963. Principles of geostatistics. Econ. Geology, 58: 1246-1266. doi: 10.2113/gsecongeo.58.8.1246
|
[47] |
Maus, S., 1996. Depth estimation from the scaling power spectrum of potential fields? Geophys. Jour. Intern. , 124 (1): 113-120.
|
[48] |
Mazzucchelli, C., 1989. Spatial filtering of exploration geo-chemical data using EDA and robust statistics. Jour. Geochem. Exploration, 34 (3): 221-243. doi: 10.1016/0375-6742(89)90114-3
|
[49] |
McCammon, R. B., Botbol, J. M., Larsen, R. S., et al., 1983. Characteristic analysis-1981: Final program and a possible discovery. Math. Geology, 15 (1): 59-84. doi: 10.1007/BF01030076
|
[50] |
McGaughey, W. J., Vallee, M. A., 1998. Integrating geology and borehole geophysics in a common earth model fori mproved three-dimensional delineation of mineral de-posits. Explor. Mining Geol. , 7 (1-2): 51-62.
|
[51] |
Mugglestone, M. A., 1998. Detection of geological lineationson aerial photographs using two-dimensional spectral analysis. Conputer & Geosciences, 24 (8): 771-784.
|
[52] |
Nunes, J. C., 2003. Image analysis by bidimensional empirical mode decomposion. Image and Vision Computing. , 21: 1019-1026. doi: 10.1016/S0262-8856(03)00094-5
|
[53] |
Nunes, J. C., 2005. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and Applications, 16: 177-188. doi: 10.1007/s00138-004-0170-5
|
[54] |
Paganelli, F., Richards, J. P., Grunsky, E. C., 2002. Integration of structural, gravity, and magnetic data using the weights of evidence method as a tool for ki mberlite exploration in the Buffalo Head Hills, northern CentralAlberta, Canada. Natural Resources Research, 11 (3): 219-236. doi: 10.1023/A:1019936006314
|
[55] |
Pan, G. C., 1993a. Regionalized favorability theory for information synthesis in mineral exploration. Math. Geol. , 25: 603-631. doi: 10.1007/BF00890248
|
[56] |
Pan, G. C., 1993b. Indicator favorability theory for mineral potential mapping. Nonrenewable Resources, 2 (4): 292-311. doi: 10.1007/BF02257540
|
[57] |
Pan, G. C., 1993c. Canonical favorability model for data integration and mineral potential mapping. Comp. Geosc. , 19: 1077-1100. doi: 10.1016/0098-3004(93)90016-X
|
[58] |
Pan, G. C., 1996. Extended weights of evidence modeling for the pseudo-estimation of metal grades. Nonrenewable Resources, 5 (1): 53-76. doi: 10.1007/BF02259070
|
[59] |
Pan, G. C., Harris, D. P., 1992. Estimating a favorability function for the integration of geodata and selection of mineral exploration targets. Mathematical Geology, 24: 177-202. doi: 10.1007/BF00897031
|
[60] |
Pan, G. C., Harris, D. P., 2000. Information synthesis for mineral exploration. Oxford University Press.
|
[61] |
Porwal, A., Carranza, E. J. M., Hale, M., 1999. Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12 (1): 1-26.
|
[62] |
Porwal, A., Carranza, E. J. M., Hale, M., 2003. Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, western India. NaturalResources Research, 12 (3): 155-171.
|
[63] |
Porwal, A., Carranza, E. J. M., Hale, M., 2006. A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15 (1): 1-14. doi: 10.1007/s11053-006-9012-7
|
[64] |
Quadros, T. F. P., Koppe, J. C., Strieder, A. J., et al., 2006. Mineral-potential mapping: A comparison of weight-of-evidence and fuzzy methods. Natural Resources Research, 15 (1): 49-65. doi: 10.1007/s11053-006-9010-9
|
[65] |
Raines, G. L., 1999. Evalution of weights of evidence to predict epithermal-gold deposits in the Great Basin of the western United States. Natural Resources Research, 8 (4): 257-276. doi: 10.1023/A:1021602316101
|
[66] |
Sahoo, N. R., Pandalai., 1999. Integration of sparse geological information in gold targeting using logistic regression analysis in the Hutti-Maski schist belt, Raichir, Karnataka, India—Acase study. Natural Resources Research, 8 (3): 233-250. doi: 10.1023/A:1021698115192
|
[67] |
Scott, M., Di mitrakopoulos, R., 2001. Quantitative analysis of mineral resources for strategic planning: Implication for Australian geological surveys. Natural ResourcesResearch, 10 (3): 159-178. doi: 10.1023/A:1012536823294
|
[68] |
Sinclair, A. J., 1998a. Geological controls in resource/reserve estimation. Explor. Mining Geol. , 7 (1-2): 29-44.
|
[69] |
Sinclair, A. J., 1998b. Exploratory data analysis: A precursor to resource/reserve estimation. Explor. Mining Geol. , 7 (1-2): 77-90. https://pubs.geoscienceworld.org/cim/emg/article/7/1-2/77/61145/Exploratory-data-analysis-a-precursor-to-resource
|
[70] |
Singer, D. A., 2001. Some suggested future directions of quantitative resource assessments. Journal of ChinaUniversity of Geosciences, 12 (1): 40-44.
|
[71] |
Singer, D. S., Kouda, R., 1997. Use of a neural network to integrate geoscience information in the classification of mineral deposits and occurrences. In: Gubins, A. G., ed., Proceedings of Exploration 97: Fourth Decennial International Conference Mineral Exploration, 127-134.
|
[72] |
Singer, D. S., Kouda, R. A., 1999. Comparison of the weights of evidence method and probabilistic neural networks. Natural Resources Research, 8 (4): 287-298. doi: 10.1023/A:1021606417010
|
[73] |
Specht, D., 1990. Probabilistic neural networks. Neural Net-works, 3: 109-118. doi: 10.1016/0893-6080(90)90049-Q
|
[74] |
Wang, S. C., Chen, Y. L., Xia, L. X., 2000. Theory and method of integrated prognosis of mineral resources. Science Press, Beijing (in Chinese).
|
[75] |
Wold, H. A., 1949. A large sample test of moving average. Jour. Royal Stat. Society, 11 (1): 297-305.
|
[76] |
Xie, X. J., 1999. On the history of mineral exploration-empirical exploration, scientific exploration, and information exploration. In: Xie, X. J., Shao, Y., Wang, X. Q., eds., Geochemistry of mineral exploration toward 21th century. Geological Publishing House, Beijing, 12-22 (inChinese).
|
[77] |
Zhang, B. R., 1989. The theoretical schema and methods for the geochemical study of metal logenic province. In: Zhang, B. R., ed., Contributions to the exploration geophysics and geochemistry. Geological PublishingHouse, Beijing, 1-20 (in Chinese).
|
[78] |
Zhao, P. D., 1992. Theories, principle, and methods for statistical prediction of mineral deposits. Mathematical Geology, 24 (6): 589-595. doi: 10.1007/BF00894226
|
[79] |
Zhao, P. D., 1995. Mathematical geology: Retrospect and prospect for the future. In: Wang, H. Z., ed., Retrospect of the development of geoscience disciplines inChina. China University of Geosciences Press, Wuhan, 174-178 (in Chinese).
|
[80] |
Zhao, P. D., 2002. "Three component"quantitative resource prediction and assessments: Theory and practice of digital mineral prospecting. Earth Science—Journal ofChina University of Geosciences, 27 (5): 139-148 (in Chinese with English abstract).
|
[81] |
Zhao, P. D., 2007. Quantitative mineral prediction and deepmineral exploration. Earth Science Frontiers, 14 (5): 1-10 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1002070508600631
|
[82] |
Zhao, P. D., Chen, J. P., Zhang, S. T., 2003. The new development of "three components"quantitative mineral pre-diction. Earth Science Frontiers, 10 (2): 455-463 (inChinese with English abstract).
|
[83] |
Zhao, P. D., Chen, Y. Q., 1998. A basic way of anomaly based location of ore body. Earth Science—Journal ofChina University of Geosciences, 23 (2): 111-114 (inChinese with English abstract).
|
[84] |
Zhao, P. D., Chen, Y. Q., 1999. Geological anomaly unitbased delineation and assessment of preferable gold ore-finding area. Earth Science—Journal of China University of Geosciences, 24 (5): 443-448 (in Chinese withEnglish abstract).
|
[85] |
Zhao, P. D., Chen, Y. Q., Jin, Y. Y., 2000. Quantitative delineation and assessment of "5P" ore-finding area onthebasis of geoanomaly principles. Geological Review, 46 (Suppl. ): 6-16 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DZLP2000S1005.htm
|
[86] |
Zhao, P. D., Chi, S. D., 1991. A preliminary view on geological anomaly. Earth Science—Journal of China University of Geosciences, 16 (3): 241-248 (in Chinese withEnglish abstract).
|
[87] |
Zhao, P. D., Chi, S. D., Chen, Y. Q., 1996. A thorough investigation of geoanonaly: A basis of metallogenic prognosis. Geological Journal of China Universities, 2 (4): 360-373 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX604.000.htm
|
[88] |
Zhao, P. D., Meng, X. G., 1993. Geoanomaly and mineral prediction. Earth Science—Journal of China University of Geosciences, 18 (1): 39-47 (in Chinese with English abstract).
|
[89] |
陈永清, 陈建国, 汪新庆, 等, 2008. 基于GIS矿产资源综合定量评价技术. 北京: 地质出版社.
|
[90] |
陈永清, 刘红光, 2001. 初论地质异常数字找矿模型. 地球科学——中国地质大学学报, 26 (2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102005.htm
|
[91] |
陈永清, 汪新庆, 陈建国, 等, 2007b. 基于GIS的矿产资源综合定量评价. 地质通报, 26 (2): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200702003.htm
|
[92] |
陈永清, 夏庆霖, 黄静宁, 等, 2007c. "证据权法"在西南"三江"南段矿产资源评价中的应用. 中国地质, 34 (1): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200701018.htm
|
[93] |
陈永清, 张生元, 夏庆霖, 等, 2006. 应用多重分形滤波技术提取致矿地球化学异常——以西南"三江"南段Cu、Zn致矿异常提取为例. 地球科学——中国地质大学学报, 31 (6): 861-866. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606016.htm
|
[94] |
成秋明, 2003. 矿床模型与非常规矿产资源评价. 地球科学——中国地质大学学报, 28 (4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm
|
[95] |
成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学——中国地质大学学报, 31 (3): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603008.htm
|
[96] |
成秋明, 2007. 成矿过程奇异性与矿产预测定量化的新理论与新方法. 地学前缘, 14 (5): 42-53. doi: 10.3321/j.issn:1005-2321.2007.05.005
|
[97] |
成秋明, 陈志军, Khaled, A., 2007. 模糊证据权法在镇沅(老王寨) 地区金矿资源评价中的应用. 地球科学——中国地质大学学报, 32 (2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702003.htm
|
[98] |
Hinze, W. J., 1990. 区域重磁异常图的应用效果. 陈维雄等译. 北京: 地质出版社.
|
[99] |
李德仁, 王树良, 李德毅, 2006. 空间数据挖掘理论与应用. 北京: 科学出版社.
|
[100] |
李庆谋, 成秋明, 2004. 分形奇异(特征) 值分解方法与地球物理和地球化学异常重建. 地球科学——中国地质大学学报, 29 (1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm
|
[101] |
王世称, 陈永良, 夏立显, 2000. 综合信息矿产预测理论与方法. 北京: 科学出版社.
|
[102] |
谢学锦, 1999. 论矿产勘查史——经验找矿、科学勘查与信息勘查. 见: 谢学锦, 邵跃, 王学求主编. 走向21世纪矿产勘查地球化学. 北京: 地质出版社, 12-22.
|
[103] |
张本仁, 1989. 成矿带地球化学研究的理论构想和方法. 见: 张本仁主编, 勘查地球物理. 勘查地球化学文集. 北京: 地质出版社, 1-20.
|
[104] |
赵鹏大, 1995. 数学地质: 回顾与展望. 见: 王鸿祯主编. 中国地质学科发展的回顾——孙云铸教授百年诞辰纪念文集. 武汉: 中国地质大学出版社, 174-178.
|
[105] |
赵鹏大, 2002. "三联式"资源定量预测与评价——数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 27 (5): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm
|
[106] |
赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14 (5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001
|
[107] |
赵鹏大, 陈建平, 张寿庭, 2003. "三联式"成矿预测新进展. 地学前缘, 10 (2): 455-463. doi: 10.3321/j.issn:1005-2321.2003.02.025
|
[108] |
赵鹏大, 陈永清, 1998. 地质异常矿体定位的基本途径. 地球科学——中国地质大学学报, 23 (2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX802.000.htm
|
[109] |
赵鹏大, 陈永清, 1999. 基于地质异常单元金矿找矿有利地段圈定与评价. 地球科学——中国地质大学学报, 24 (5): 443-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199905000.htm
|
[110] |
赵鹏大, 陈永清, 金友渔, 2000. 基于地质异常的"5P"找矿地段的定量圈定与评价. 地质论评, 46 (增刊): 6-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2000S1005.htm
|
[111] |
赵鹏大, 池顺都, 1991. 初论地质异常. 地球科学——中国地质大学学报, 16 (3): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199103000.htm
|
[112] |
赵鹏大, 池顺都, 陈永清, 1996. 查明地质异常: 成矿预测的基础. 高校地质学报, 2 (4): 360-373. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX604.000.htm
|
[113] |
赵鹏大, 孟宪国, 1993. 地质异常与矿产预测. 地球科学——中国地质大学学报, 18 (1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199301007.htm
|