Extraction and Integration of Geoanomalies Associated with Mineralization
-
摘要: 矿床及其周围局部和区域的地质、地球物理和地球化学以及遥感地质等勘查信息构成认识成矿规律和资源潜力评价的基础.矿产资源综合定量评价首先涉及到以建立地质成矿概念模型为基础的地质、地球化学、地球物理以及遥感地质等单学科异常信息的提取与集成, 然后是对多学科异常信息的综合提取与集成, 最后应用综合致矿信息定量圈定找矿靶区, 评价资源潜力.阐述了综合地质异常数字找矿过程中综合致矿地质异常信息提取、信息关联、信息转换和信息集成的基本概念.强调实现“由地质异常体特征到空间地质异常信息模型, 再根据空间异常信息模型推断地质异常体特征”这一信息双向转换的重要意义.结果表明: (1) 综合致矿地质异常概念模型是选择资源评价变量和建立综合地质异常数字找矿模型的基础; (2) 非线性方法技术是提取隐蔽矿化信息的有效手段; (3) 综合致矿地质异常概念模型与数字找矿数学模型的有机结合是实现数字找矿突破的关键; (4) 应用综合致矿异常信息模拟矿产资源潜力的过程实质上是一个信息逐渐提取与集成的过程, 亦是一个空间数据→空间信息→知识决策的过程.
-
关键词:
- 综合致矿地质异常 /
- 信息提取与集成 /
- 信息关联与转换 /
- 非线性数学方法 /
- 矿产资源综合定量评价
Abstract: The local and regional anomalies of mineral deposits from geology, geophysics, geochemistry as well as remote sensing image constitute a foundation for recognizing ore-forming regularities and estimating mineral potentials.Quantitatively integrated assessment of mineral resources usually includes three steps: (a) firstly, the extraction and integration of single discipline anomaly; (b) then, extraction and integration of multi-discipline anomalies; (c) finally, the integrated anomalies are used for indentifying ore-finding targets and assessing mineral potentials.In this paper, the basic concepts of extraction, connection, transform, and integration of the geoanomalies with mineralization from geology, geochemistry, and geophysics are elucidated.It emphasizes the significance of the bidirectional information transforms, that is, from characteristics of geoamomalous bodies to a spatial geoanomalous pattern, and from the pattern inferring the significance of a concrete geoanomalous body forming in the similar geological setting.It comes to the conclusions as follows: (a) the conceptual model of geoanomalies associated with mineralization is a foundation for selecting variables and establishing integrated mineral exploration pattern; (b) the nonlinear approach is a powerful tool to extract implicit mineralization information; (c) combination of the conceptual model of anomaly associated with mineralization with the mathematical model of the integrated mineral exploration is a key to discover new mineral deposits; (d) the process that integrated anomalies associated with mineralization are applied to modeling mineral potentials is one that gradually extracts and integrates mineralized information, and is also one that develops from spatial data, to spatial anomaly and to knowledge decision. -
[1] Agterberg, F. P., 1989. LOGDIA-FORTRAN 77 programs for logistic regression with diagnostics. Computer & Geosciences, 15 (4): 599-614. [2] Agterberg, F. P., Bonham-Carter, G. F., 2005. Measuring performance of mineral-potential maps. Natural Resources Research, 14 (1): 1-18. doi: 10.1007/s11053-005-4674-0 [3] Araujo, C. C., Macedo, A. B., 2002. Multicriteria geologicaldata analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira valley metallogenic province, Brazil. Natural Resources Research, 11 (1): 29-44. doi: 10.1023/A:1014235703541 [4] Bath, M., 1974. Special analysis in geophysics: Developments in solid earth geophysics 7. Elsevier Scientific Publishing Company, Amsterdam-Oxford-York. [5] Bonham-Carter, G. F., 1994. Geographic information systems for geoscientists: Modelling with the GIS. Pergamon, Ontario. [6] Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F., 1989. Weights of evidence modeling: A new approach tomapping mineral potential. Statistical Applications inEarth Sciences, 89 (9): 171-183. [7] Botbol, J. M., 1971. An application of characteristic analysis to mineral exploration. In: Proceedings of 9th International Symposium on Techniques for Decision-Makingin the Mineral Industry (Montreal, Canada). Special volume, 12: 92-99. [8] Brown, W. M., Gedeon, T. D., Groves, D. I., 2003. Use ofnoise to augment training data: Aneural network method of mineral-potential mapping in regions of limited known deposit examples. Natural Resources Research, 12 (2): 141-152. doi: 10.1023/A:1024218913435 [9] Carranza, E. J. M., 2004. Weights of evidence modeling ofmineral potential: A case study using small number ofprospects, Abra, Philippins. Natural Resources Research, 13 (3): 173-188. doi: 10.1023/B:NARR.0000046919.87758.f5 [10] Chen, Y. Q., Chen, J. G., Wang, X. Q., et al., 2008. Quantitative integrated assessment techniques for mineral resources based on GIS. Geological Publishing House, Beijing (in Chinese). [11] Chen, Y. Q., Huang, J. N., Zhang, S. Y., 2007a. Application of multi-fractal filtering in geochemistry data decomposing—A case study fromthe south region of "Sanjiangore-forming belt", south-western China. In: Bernd, M., ed., Proceedings of Fifth Decennial International Conference on Mineral Exploration, Exploration07, Volume two, Toronto, 985-988. [12] Chen, Y. Q., Wang, X. Q., Chen, J. G., et al., 2007b. GISbased integrated quantitative assessments of mineral re-sources. Geological Bulletin of China, 26 (2): 141-149 (in Chinese with English abstract). https://www.researchgate.net/publication/288995776_GIS-based_integrated_quantitative_assessments_of_mineral_resources [13] Chen, Y. Q., Xia, Q. L., Wang, X. Q., et al., 2007c. Application of the weight-of-evidence method in mineral re-sources in the southern segment of the"Sanjiang metal-logenic zone", southwestern China. Geology in China, 34 (1): 132-141 (in Chinese with English abstract). [14] Chen, Y. Q., Liu, H. G., 2001. A preliminary view on digitalpattern for mineral exploration based geoanomaly. Earth Science—Journal of China University of Geo-sciences, 26 (2): 129-134 (in Chinese with English abstract). [15] Chen, Y. Q., Xia, Q. L., Liu, H. G., 2000. Delineation of potential mineral resources region based on geo-anomalyunit. Journal of China University of Geosciences, 11 (2): 158-163. [16] Chen, Y. Q., Zhang, S. Y., Xia, Q. L., et al., 2006. Application of multi-fractal filtering to extraction of geochemical anomalies from multi-geochemical backgrounds: Acase study of the southern section of "Sanjiang ore-forming zone", southwestern China. Earth Science—Journal of China University of Geosciences, 31 (6): 861-866 (in Chinese with English abstract). [17] Chen, Y. Q., Zhao, P. D., 1997. The delineated methods ofgeological anomaly units and its application in the statistical predication of gold deposits of large scale. In: Zhao, P. D., et al., eds., Proc. 30th Int'l. Geo. Congr. (Volume25), Mathematical Geology and Geoinformat-ics, VSP, 23-32. [18] Chen, Y. Q., Zhao, P. D., Chen, J. G., et al., 2001. Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in westernShangdong uplift terrain, eastern China. Natural Resources Research, 10 (1): 35-49. doi: 10.1023/A:1011581414877 [19] Cheng, Q. M., 1995. The perimeter-area fractal model and its application in geology. Mathematical Geology, 27 (7): 64-77. [20] Cheng, Q. M., 1999. Multifractality and spatial statistics. Computer and Geosciences, 25 (10): 8-25. https://www.sciencedirect.com/science/article/pii/S0098300499000606 [21] Cheng, Q. M., 2003. Non-linear mineralization model and in-formation processing methods for prediction of uncon-ventional mineral resources. Earth Science—Journal ofChina University of Geosciences, 28 (4): 1-10 (in Chinese with English abstract). [22] Cheng, Q. M., 2004a. A new model for quantifying aniso-tropic scale invariance and for decomposition of mixingpatterns. Mathematical Geology, 36 (3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a [23] Cheng, Q. M., 2004b. GeoDAS Ⅲ user'guide & exercisemanual. York University, Canada. [24] Cheng, Q. M., 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth Science—Journalof China University of Geosciences, 31 (3): 337-348 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200603008.htm [25] Cheng, Q. M., 2007. Singular mineralization process and min-eral resources quantitative prediction: New theories and methods. Earth Science Frontiers, 14 (5): 42-53 (inChinese with English abstract). [26] Cheng, Q. M., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40 (5): 503-532. doi: 10.1007/s11004-008-9172-6 [27] Cheng, Q. M., Agterberg, F. P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8 (1): 27-35. doi: 10.1023/A:1021677510649 [28] Cheng, Q. M., Chen, Z. J., Khaled, A., 2007. Application of fuzzy weights of evidence method in mineral resource assessment for gold in Zhenyuan district, Yunnan Province, China. Earth Science—Journal of China University of Geosciences, 32 (2): 175-184 (in Chinese withEnglish abstract). [29] Cheng, Q. M., Xu, Y. G., Grunsky, E., 2000. Integrated spatial and spectrum analysis for geochemical anomaly separation. Nature Resources Research, 9 (1): 43-56. doi: 10.1023/A:1010109829861 [30] Chung, C. F., Agterberg, F. P., 1980. Regression models for estimating mineral resources from geological map data. Mathematical Geology, 12 (5): 473-488. doi: 10.1007/BF01028881 [31] Gorelov, D. A., 1982. Quantitative characteristics of geologic anomalies in assessing ore capacity. Internal. GeologyRew. , 4: 457-465. [32] Griffin, W. R., 1949. Residual gravity in theory and practice. Geophysics, 14 (1): 39-56. doi: 10.1190/1.1437506 [33] Hanmes, T., 2006. Theory and practice in mathematical geology—Introduction and discussion. Mathematical Geology, 38 (6): 659-665. [34] Harris, D. P., Pan, G., 1999. Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8: 93-109. doi: 10.1023/A:1021886501912 [35] Harris, D. P., Zurcher, L., Stanley, M., et al., 2003. A comparison analysis of favorability mapping by the weights of evidence, and probabilistic neural networks, discriminant analysis, and logistic regression. Natural ResourcesResearch, 12 (4): 241-255. doi: 10.1023/B:NARR.0000007804.27450.e8 [36] Hinze, W. J., 1990. Applied effect of regional gravitational and magnetic data in geology. Translated by Chen, W. X., et al. . Geological Publishing House, Beijing (in Chinese). [37] Hu, G. D., Chen, J. G., Chen, S. Y., 2000. Metallic mineralresources assessment and analysis systemdesign. Journal of China University of Geosciences, 11 (3): 308-311. [38] Huang, J. N., Liu, H. G., Zhao, P. D., 2008. Application of multi-fractal filtering to extract Cu, Ni, Au anomalies of the East Tianshan ore-forming belt, north-western China. The 33rd International Geological Congress, Oslo (CD Abstract). [39] Huang, N. E., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Society Lond., A454: 903-995. doi: 10.1098/rspa.1998.0193 [40] Kay, M., Dimitrakopoulos, R., 2000. Integrated interpolation methods for geophysical data: Application to mineral exploration. Natural Resources Research, 9 (1): 53-64. [41] Koike, K., Matsuda, S., Suzuki, T., et al., 2002. Neural net-work-based estimation of principal metal contents in theHokuroku district, northern Japan, for explorationKuroko-type deposits. Natural Resources Research, 11 (2): 135-156. doi: 10.1023/A:1015520204066 [42] Krige, D. G., 1966. Two-dimensional weighted moving aver-age trend surfaces for ore evaluation. Jour. South African Inst. Mining and Metallurgy, 66: 13-38. [43] Li, D. R., Wang, S. L., Li, D. Y., 2006. Spatial data mining theories and applications. Science Press, Beijing (in Chinese). [44] Li, Q. M., Cheng, Q. M., 2004. Fractal singular-value (eginvalue) decomposition method for geophysical and geochemical anomaly reconstruction. Earth Science—Journal of China University of Geosciences, 29 (1): 109-118 (in Chinese with English abstract). https://www.researchgate.net/publication/284672230_Fractal_singular-value_eigen-value_decomposition_method_for_geophysical_and_geochemical_anomaly_reconstruction [45] Lovejoy, S., 2005. Multifracal simulation of the Earth's surface and interior: Anisotropic singularities and morphology. In: Cheng, Q. M., et al., eds., Proceedings ofIAMG'2005: GIS and Spatial Analysis. China Universi-ty of Geosciences Press, Wuhan, 37-54. [46] Matheron, G., 1963. Principles of geostatistics. Econ. Geology, 58: 1246-1266. doi: 10.2113/gsecongeo.58.8.1246 [47] Maus, S., 1996. Depth estimation from the scaling power spectrum of potential fields? Geophys. Jour. Intern. , 124 (1): 113-120. [48] Mazzucchelli, C., 1989. Spatial filtering of exploration geo-chemical data using EDA and robust statistics. Jour. Geochem. Exploration, 34 (3): 221-243. doi: 10.1016/0375-6742(89)90114-3 [49] McCammon, R. B., Botbol, J. M., Larsen, R. S., et al., 1983. Characteristic analysis-1981: Final program and a possible discovery. Math. Geology, 15 (1): 59-84. doi: 10.1007/BF01030076 [50] McGaughey, W. J., Vallee, M. A., 1998. Integrating geology and borehole geophysics in a common earth model fori mproved three-dimensional delineation of mineral de-posits. Explor. Mining Geol. , 7 (1-2): 51-62. [51] Mugglestone, M. A., 1998. Detection of geological lineationson aerial photographs using two-dimensional spectral analysis. Conputer & Geosciences, 24 (8): 771-784. [52] Nunes, J. C., 2003. Image analysis by bidimensional empirical mode decomposion. Image and Vision Computing. , 21: 1019-1026. doi: 10.1016/S0262-8856(03)00094-5 [53] Nunes, J. C., 2005. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and Applications, 16: 177-188. doi: 10.1007/s00138-004-0170-5 [54] Paganelli, F., Richards, J. P., Grunsky, E. C., 2002. Integration of structural, gravity, and magnetic data using the weights of evidence method as a tool for ki mberlite exploration in the Buffalo Head Hills, northern CentralAlberta, Canada. Natural Resources Research, 11 (3): 219-236. doi: 10.1023/A:1019936006314 [55] Pan, G. C., 1993a. Regionalized favorability theory for information synthesis in mineral exploration. Math. Geol. , 25: 603-631. doi: 10.1007/BF00890248 [56] Pan, G. C., 1993b. Indicator favorability theory for mineral potential mapping. Nonrenewable Resources, 2 (4): 292-311. doi: 10.1007/BF02257540 [57] Pan, G. C., 1993c. Canonical favorability model for data integration and mineral potential mapping. Comp. Geosc. , 19: 1077-1100. doi: 10.1016/0098-3004(93)90016-X [58] Pan, G. C., 1996. Extended weights of evidence modeling for the pseudo-estimation of metal grades. Nonrenewable Resources, 5 (1): 53-76. doi: 10.1007/BF02259070 [59] Pan, G. C., Harris, D. P., 1992. Estimating a favorability function for the integration of geodata and selection of mineral exploration targets. Mathematical Geology, 24: 177-202. doi: 10.1007/BF00897031 [60] Pan, G. C., Harris, D. P., 2000. Information synthesis for mineral exploration. Oxford University Press. [61] Porwal, A., Carranza, E. J. M., Hale, M., 1999. Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12 (1): 1-26. [62] Porwal, A., Carranza, E. J. M., Hale, M., 2003. Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, western India. NaturalResources Research, 12 (3): 155-171. [63] Porwal, A., Carranza, E. J. M., Hale, M., 2006. A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15 (1): 1-14. doi: 10.1007/s11053-006-9012-7 [64] Quadros, T. F. P., Koppe, J. C., Strieder, A. J., et al., 2006. Mineral-potential mapping: A comparison of weight-of-evidence and fuzzy methods. Natural Resources Research, 15 (1): 49-65. doi: 10.1007/s11053-006-9010-9 [65] Raines, G. L., 1999. Evalution of weights of evidence to predict epithermal-gold deposits in the Great Basin of the western United States. Natural Resources Research, 8 (4): 257-276. doi: 10.1023/A:1021602316101 [66] Sahoo, N. R., Pandalai., 1999. Integration of sparse geological information in gold targeting using logistic regression analysis in the Hutti-Maski schist belt, Raichir, Karnataka, India—Acase study. Natural Resources Research, 8 (3): 233-250. doi: 10.1023/A:1021698115192 [67] Scott, M., Di mitrakopoulos, R., 2001. Quantitative analysis of mineral resources for strategic planning: Implication for Australian geological surveys. Natural ResourcesResearch, 10 (3): 159-178. doi: 10.1023/A:1012536823294 [68] Sinclair, A. J., 1998a. Geological controls in resource/reserve estimation. Explor. Mining Geol. , 7 (1-2): 29-44. [69] Sinclair, A. J., 1998b. Exploratory data analysis: A precursor to resource/reserve estimation. Explor. Mining Geol. , 7 (1-2): 77-90. https://pubs.geoscienceworld.org/cim/emg/article/7/1-2/77/61145/Exploratory-data-analysis-a-precursor-to-resource [70] Singer, D. A., 2001. Some suggested future directions of quantitative resource assessments. Journal of ChinaUniversity of Geosciences, 12 (1): 40-44. [71] Singer, D. S., Kouda, R., 1997. Use of a neural network to integrate geoscience information in the classification of mineral deposits and occurrences. In: Gubins, A. G., ed., Proceedings of Exploration 97: Fourth Decennial International Conference Mineral Exploration, 127-134. [72] Singer, D. S., Kouda, R. A., 1999. Comparison of the weights of evidence method and probabilistic neural networks. Natural Resources Research, 8 (4): 287-298. doi: 10.1023/A:1021606417010 [73] Specht, D., 1990. Probabilistic neural networks. Neural Net-works, 3: 109-118. doi: 10.1016/0893-6080(90)90049-Q [74] Wang, S. C., Chen, Y. L., Xia, L. X., 2000. Theory and method of integrated prognosis of mineral resources. Science Press, Beijing (in Chinese). [75] Wold, H. A., 1949. A large sample test of moving average. Jour. Royal Stat. Society, 11 (1): 297-305. [76] Xie, X. J., 1999. On the history of mineral exploration-empirical exploration, scientific exploration, and information exploration. In: Xie, X. J., Shao, Y., Wang, X. Q., eds., Geochemistry of mineral exploration toward 21th century. Geological Publishing House, Beijing, 12-22 (inChinese). [77] Zhang, B. R., 1989. The theoretical schema and methods for the geochemical study of metal logenic province. In: Zhang, B. R., ed., Contributions to the exploration geophysics and geochemistry. Geological PublishingHouse, Beijing, 1-20 (in Chinese). [78] Zhao, P. D., 1992. Theories, principle, and methods for statistical prediction of mineral deposits. Mathematical Geology, 24 (6): 589-595. doi: 10.1007/BF00894226 [79] Zhao, P. D., 1995. Mathematical geology: Retrospect and prospect for the future. In: Wang, H. Z., ed., Retrospect of the development of geoscience disciplines inChina. China University of Geosciences Press, Wuhan, 174-178 (in Chinese). [80] Zhao, P. D., 2002. "Three component"quantitative resource prediction and assessments: Theory and practice of digital mineral prospecting. Earth Science—Journal ofChina University of Geosciences, 27 (5): 139-148 (in Chinese with English abstract). [81] Zhao, P. D., 2007. Quantitative mineral prediction and deepmineral exploration. Earth Science Frontiers, 14 (5): 1-10 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1002070508600631 [82] Zhao, P. D., Chen, J. P., Zhang, S. T., 2003. The new development of "three components"quantitative mineral pre-diction. Earth Science Frontiers, 10 (2): 455-463 (inChinese with English abstract). [83] Zhao, P. D., Chen, Y. Q., 1998. A basic way of anomaly based location of ore body. Earth Science—Journal ofChina University of Geosciences, 23 (2): 111-114 (inChinese with English abstract). [84] Zhao, P. D., Chen, Y. Q., 1999. Geological anomaly unitbased delineation and assessment of preferable gold ore-finding area. Earth Science—Journal of China University of Geosciences, 24 (5): 443-448 (in Chinese withEnglish abstract). [85] Zhao, P. D., Chen, Y. Q., Jin, Y. Y., 2000. Quantitative delineation and assessment of "5P" ore-finding area onthebasis of geoanomaly principles. Geological Review, 46 (Suppl. ): 6-16 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DZLP2000S1005.htm [86] Zhao, P. D., Chi, S. D., 1991. A preliminary view on geological anomaly. Earth Science—Journal of China University of Geosciences, 16 (3): 241-248 (in Chinese withEnglish abstract). [87] Zhao, P. D., Chi, S. D., Chen, Y. Q., 1996. A thorough investigation of geoanonaly: A basis of metallogenic prognosis. Geological Journal of China Universities, 2 (4): 360-373 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX604.000.htm [88] Zhao, P. D., Meng, X. G., 1993. Geoanomaly and mineral prediction. Earth Science—Journal of China University of Geosciences, 18 (1): 39-47 (in Chinese with English abstract). [89] 陈永清, 陈建国, 汪新庆, 等, 2008. 基于GIS矿产资源综合定量评价技术. 北京: 地质出版社. [90] 陈永清, 刘红光, 2001. 初论地质异常数字找矿模型. 地球科学——中国地质大学学报, 26 (2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102005.htm [91] 陈永清, 汪新庆, 陈建国, 等, 2007b. 基于GIS的矿产资源综合定量评价. 地质通报, 26 (2): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200702003.htm [92] 陈永清, 夏庆霖, 黄静宁, 等, 2007c. "证据权法"在西南"三江"南段矿产资源评价中的应用. 中国地质, 34 (1): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200701018.htm [93] 陈永清, 张生元, 夏庆霖, 等, 2006. 应用多重分形滤波技术提取致矿地球化学异常——以西南"三江"南段Cu、Zn致矿异常提取为例. 地球科学——中国地质大学学报, 31 (6): 861-866. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606016.htm [94] 成秋明, 2003. 矿床模型与非常规矿产资源评价. 地球科学——中国地质大学学报, 28 (4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm [95] 成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学——中国地质大学学报, 31 (3): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603008.htm [96] 成秋明, 2007. 成矿过程奇异性与矿产预测定量化的新理论与新方法. 地学前缘, 14 (5): 42-53. doi: 10.3321/j.issn:1005-2321.2007.05.005 [97] 成秋明, 陈志军, Khaled, A., 2007. 模糊证据权法在镇沅(老王寨) 地区金矿资源评价中的应用. 地球科学——中国地质大学学报, 32 (2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702003.htm [98] Hinze, W. J., 1990. 区域重磁异常图的应用效果. 陈维雄等译. 北京: 地质出版社. [99] 李德仁, 王树良, 李德毅, 2006. 空间数据挖掘理论与应用. 北京: 科学出版社. [100] 李庆谋, 成秋明, 2004. 分形奇异(特征) 值分解方法与地球物理和地球化学异常重建. 地球科学——中国地质大学学报, 29 (1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm [101] 王世称, 陈永良, 夏立显, 2000. 综合信息矿产预测理论与方法. 北京: 科学出版社. [102] 谢学锦, 1999. 论矿产勘查史——经验找矿、科学勘查与信息勘查. 见: 谢学锦, 邵跃, 王学求主编. 走向21世纪矿产勘查地球化学. 北京: 地质出版社, 12-22. [103] 张本仁, 1989. 成矿带地球化学研究的理论构想和方法. 见: 张本仁主编, 勘查地球物理. 勘查地球化学文集. 北京: 地质出版社, 1-20. [104] 赵鹏大, 1995. 数学地质: 回顾与展望. 见: 王鸿祯主编. 中国地质学科发展的回顾——孙云铸教授百年诞辰纪念文集. 武汉: 中国地质大学出版社, 174-178. [105] 赵鹏大, 2002. "三联式"资源定量预测与评价——数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 27 (5): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm [106] 赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14 (5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001 [107] 赵鹏大, 陈建平, 张寿庭, 2003. "三联式"成矿预测新进展. 地学前缘, 10 (2): 455-463. doi: 10.3321/j.issn:1005-2321.2003.02.025 [108] 赵鹏大, 陈永清, 1998. 地质异常矿体定位的基本途径. 地球科学——中国地质大学学报, 23 (2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX802.000.htm [109] 赵鹏大, 陈永清, 1999. 基于地质异常单元金矿找矿有利地段圈定与评价. 地球科学——中国地质大学学报, 24 (5): 443-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199905000.htm [110] 赵鹏大, 陈永清, 金友渔, 2000. 基于地质异常的"5P"找矿地段的定量圈定与评价. 地质论评, 46 (增刊): 6-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2000S1005.htm [111] 赵鹏大, 池顺都, 1991. 初论地质异常. 地球科学——中国地质大学学报, 16 (3): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199103000.htm [112] 赵鹏大, 池顺都, 陈永清, 1996. 查明地质异常: 成矿预测的基础. 高校地质学报, 2 (4): 360-373. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX604.000.htm [113] 赵鹏大, 孟宪国, 1993. 地质异常与矿产预测. 地球科学——中国地质大学学报, 18 (1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199301007.htm
点击查看大图
计量
- 文章访问数: 3369
- HTML全文浏览量: 72
- PDF下载量: 92
- 被引次数: 0