• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    云南个旧期北山七段玄武岩中磁黄铁矿结构变化分形特征

    李增华 成秋明 谢淑云 徐德义 夏庆霖 张生元

    李增华, 成秋明, 谢淑云, 徐德义, 夏庆霖, 张生元, 2009. 云南个旧期北山七段玄武岩中磁黄铁矿结构变化分形特征. 地球科学, 34(2): 275-280.
    引用本文: 李增华, 成秋明, 谢淑云, 徐德义, 夏庆霖, 张生元, 2009. 云南个旧期北山七段玄武岩中磁黄铁矿结构变化分形特征. 地球科学, 34(2): 275-280.
    LI Zeng-hua, CHENG Qiu-ming, XIE Shu-yun, XU De-yi, XIA Qing-lin, ZHANG Sheng-yuan, 2009. Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China. Earth Science, 34(2): 275-280.
    Citation: LI Zeng-hua, CHENG Qiu-ming, XIE Shu-yun, XU De-yi, XIA Qing-lin, ZHANG Sheng-yuan, 2009. Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China. Earth Science, 34(2): 275-280.

    云南个旧期北山七段玄武岩中磁黄铁矿结构变化分形特征

    基金项目: 

    国家自然科学基金项目 40502029

    国家自然科学基金项目 40525009

    国家自然科学基金项目 40638041

    国家自然科学基金项目 40872195

    详细信息
      作者简介:

      李增华(1983-)‚硕士‚从事矿产勘查与数学地质学的研究.E-mail: lizenghua@gmail.com

    • 中图分类号: P628

    Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China

    • 摘要:

      微观尺度上土壤孔隙、岩石孔洞缝、矿物组构的分形与多重分形研究受到广泛关注, 典型的P-A (周长-面积) 分形模型、盒子维数等也广泛应用于其中.云南个旧锡多金属矿床老厂期北山垂向上七段玄武岩发育完整, 但对其形成机理及对成矿的贡献有较多的争议.这七层玄武岩中磁黄铁矿广泛发育.基于GIS的P-A分形模型研究磁黄铁矿颗粒的大小、颗粒的不规则性及空间分布特征, 探讨磁黄铁矿这一标志性矿物在不同层段玄武岩中的变化情况, 并为玄武岩的成因给出新的解释.结合盒子维数, 分形分析结果显示, 从第一段玄武岩到第七段玄武岩磁黄铁矿的面积分维DA和周长分维DP总体保持不变的态势; 而周长-面积分维DPA却有逐渐增大的趋势.DPA增大表明随着深度的增加, 磁黄铁矿颗粒不规则性增强.

       

    • 图  1  GIS技术处理磁黄铁矿的显微图像过程

      a.玄武岩第1段的原始图片; b.等高线图中灰度值为160时圈定的磁黄铁矿颗粒; c.用GIS技术从图a中提取磁黄铁矿颗粒的矢量图; d.图c叠加在图a上的结果, 可看出两者的差别

      Fig.  1.  GIS-based technique for processing micrographs of pyrrhotite grains

      图  2  图 1a中磁黄铁矿颗粒分布的logN(r)-logr关系

      Fig.  2.  logN(r)-logr plot for pyrrhotite grains in Fig. 1a

      图  3  图 1a玄武岩中磁黄铁矿颗粒的周长-面积投影

      Fig.  3.  log-log plot of P-A of pyrrhotite grains in Fig. 1a

      图  4  七段玄武岩DADPDPA投影图

      Fig.  4.  Regression fits of DA, DP, DPA

      表  1  云南个旧期北山七段玄武岩特征

      Table  1.   Properties of seven layers of basalts in Qibeishan of Gejiu district, Yunnan Province

      表  2  各段玄武岩中磁黄铁矿颗粒的计盒维数

      Table  2.   Box-counting dimension of pyrrhotite grains in different basalts

      表  3  七段玄武岩中磁黄铁矿对应的平均分维值

      Table  3.   Different fractal dimensions of pyrrhotite in seven basalts

    • [1] Cheng, Q. M., 1995. The peri meter-area fractal model anditsapplication to geology. Math. Geol. , 27 (1): 69-82. doi: 10.1007/BF02083568
      [2] Cheng, Q. M., 2001. GIS-based statistical and fractal/multifractal analysis of surface stream patterns in the Oak Ridges-Moraine. Computers & Geosciences, 27 (5): 513-526. https://www.academia.edu/73827132/GIS_based_statistical_and_fractal_multifractal_analysis_of_surface_stream_patterns_in_the_Oak_Ridges_Moraine
      [3] Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. Theseparation of geochemical anomalies from backgroundby fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      [4] Ding, B. H., Li, W. C., Wang, F. M., 1999. Analysis of fractal image and design of fractal dimension calculationprogram. Journal of University of Science and Technology Beijing, 21 (3): 304-307 (in Chinese with Eng-lish abstract). https://www.sciencedirect.com/science/article/pii/S1877705812022618
      [5] Goodchild, M. F., 1988. Lakes on fractal surfaces: A null hypothesis for lake-rich landscapes. Math. Geol. , 20 (6): 615-630. doi: 10.1007/BF00890580
      [6] Gulbin, Y. L., Evangulova, E. B., 2003. Morphometry of quartz aggregates in granites: Fractal images referring to nucleation and growth processes. Math. Geol. , 35 (7): 819-833. doi: 10.1023/B:MATG.0000007781.90498.5e
      [7] Li, Y. S., Qin, D. X., Dang, Y. T., 2006. Lithological featuresof basalt in Gejiu eastern area, Yunnan Province. Science & Technology Review, 24 (02): 70-72 (in Chinesewith English abstract).
      [8] Li, Y. S., Qin, D. X., Hong, T., et al., 2007. The orecontrolling of basalt of the Indo-Chinese epoch in eastern Gejiu, Yunnan Province. Nonferrous Metals (Mining Section), 59 (1): 26-29 (in Chinese with Englishabstract).
      [9] Lovejoy, S., 1982. Area-peri meter relation for rain and cloudareas. Science, 216 (4542): 185-187. doi: 10.1126/science.216.4542.185
      [10] Mandelbrot, B. B., 1982. The fractal geometry of nature. W. H. Freeman, New York, 468.
      [11] Mandelbrot, B. B., 1983. The fractal geometry of nature (updated and augmented edition). W. H. Freeman, New York, 468.
      [12] Mandelbrot, B. B., Passoja, D. E., Paullay, A. J., 1984. Fractal character of fracture surfaces of metals. Nature, 308 (5961): 721-722. doi: 10.1038/308721a0
      [13] Wang‚ Z. J. ‚Cheng ‚Q. M. ‚Xia‚ Q. L. ‚2005. The P-A fractal model characterizing microstructure of minerals. In: Cheng‚ Q. M. ‚et al. ‚eds. ‚Proceedings of IAMG'05: GIS and spatial analysis. China University of Geosciences Press, ‚Wuhan‚ 317-322.
      [14] Wang, Z. J., Cheng, Q. M., 2006. Characterization of microtexture of quartz mylonite deformation process usingfractal P-A model. Earth Science-Journal of China University of Geosciences, 31 (3): 361-365 (in Chinese with English abstract).
      [15] Wang, Z. J., Cheng, Q. M., Li, C., et al., 2007. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Math. Geol. , 39 (1): 53-68. doi: 10.1007/s11004-006-9065-5
      [16] Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. Journal of China University of Geosciences, 19 (1): 77-84. doi: 10.1016/S1002-0705(08)60027-8
      [17] Zhang, Z., Mao, H., Cheng, Q. M., 2001. Fractal geometryof element distribution on mineral surfaces. Math. Geol. , 33 (2): 217-228. doi: 10.1023/A:1007587318807
      [18] Zuo ‚R. ‚Cheng‚ Q. M. ‚ Xia‚ Q. L. ‚ et al. ‚2008. Application of fractal models to distinguish between different mineral phases. Mathematical Geosciences, ‚ DOI: 10.1007/s11004-008-9191-3.
      [19] 丁保华, 李文超, 王福明, 1999. 分形图像分析与分形维数计算程序的设计. 北京科技大学学报, 21 (3): 304-307. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199903024.htm
      [20] 黎应书, 秦德先, 党玉涛, 2006. 云南个旧东区玄武岩岩石学特征. 科技导报, 24 (02): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200602026.htm
      [21] 黎应书, 秦德先, 洪托, 等, 2007. 个旧东区印支期玄武岩的控矿作用. 有色金属(矿山部分), 59 (1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU200701006.htm
      [22] 王志敬, 成秋明, 2006. P-A分形模型定量度量糜棱岩变形过程中石英微结构的变化. 地球科学——中国地质大学学报, 31 (3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603011.htm
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  3675
    • HTML全文浏览量:  73
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-15
    • 刊出日期:  2009-03-25

    目录

      /

      返回文章
      返回