Chaotic Characteristics and Prediction for Water Inrush in Mine
-
摘要:
由于受到水文地质、矿井开采等因素的影响, 矿井地下水系统的演化不仅具有确定性也具有随机性, 采用单一的确定性方法或随机性方法都难以揭示矿井地下水系统演化的两面性.混沌理论将确定性分析方法和随机性分析方法两者实现了统一.矿井涌水量时间序列是地下水系统中各要素相互作用的结果, 它包含着该动力系统的信息.基于刘桥二矿水文地质背景分析, 采用混沌时间序列分析方法对该矿的矿井涌水量时间序列进行建模、分析, 得出了其Lyapunov指数为0.1427, 表明刘桥二矿涌水量具有混沌特征.利用建立的模型, 选择2004年4月至2005年2月间的矿井涌水量时间序列进行验证, 结果表明, 利用混沌时间序列分析方法预测矿井涌水量是可行的且具有较高的精度.
Abstract:It is difficult to discover the certainty and randomness of the law of the evolution of the underground water system by only using deterministic method or stochastic method, because the evolution of the system is not only deterministic but also stochastic, due to the effect of such factors as hydrologic geology and mine exploitation.Chaos theory combines both deterministic analysis method and stochastic analysis method.The time series of water inrush in mine are the results of the interaction between the factors of the underground water system in mine and contain the information of this dynamical system.Based on the background analysis of hydrologic geology of the second coal mine in Liuqiao, we obtained the Lyapunov index (0.1427) of the time series of water inrush by modeling and analyzing of the chaotic time series.The Lyapunov index shows that the water inrush of the second coal mine in Liuqiao is of chaotic characteristics.By using the established model, the time series of water inrush in mine from April 2004 to February 2005 was verified, and the results indicate that the chaotic time series analysis method is feasible and highly effective in predicting the water inrush in mine.
-
Key words:
- the second coal mine in Liuqiao /
- chaotic time series /
- water inrush in mine /
- prediction
-
表 1 矿井涌水量实测值和预测值比较
Table 1. Comparison of observed data with forecasted results
-
[1] Cao, L. Y., 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 110 (1-2): 43-50. doi: 10.1016/S0167-2789(97)00118-8 [2] Grassberger, P., Procacia, I., 1983. Measuring the strangeness of strange attractors. Physica D, 9 (1-2): 189-208. doi: 10.1016/0167-2789(83)90298-1 [3] Lü, J. H., Lu, J. A., Chen, S. H., 2002. Chaotic time series analysis and application. Wuhan University Press, Wuhan, 237 (in Chinese). [4] Packard, N. H., Crutchfield, J. P., Farmer, J. D., et al., 1980. Geometry froma time series. Phys. Rev. Lett., 45 (9): 712-716. doi: 10.1103/PhysRevLett.45.712 [5] Reibiec, M. S., 1991. Hydrofracturing of rock as a method of water, mudmand gas inrush hazards in underground coal mining. 4th IMt A, 1 (Yugoslavia). [6] Rosenstein, M. T., Collins, J. J., Deluca, C. J., 1993. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65 (3): 117-134. [7] Shang, P. G., Li, X. W., Santi, K., 2005. Chaotic analysis of traffic time series. Chaos, Solitions & Fractals, 25 (1): 121-128. [8] Tang, L., Yang, Y. G., Xu, Z. J., 2007. Study of nonlinear time series analysis and its use on mine water inrush prediction. Geotechnical Investigation & Surveying, (5): 28-31 (in Chinese with English abstract). [9] Tang, Y. M., Xiao, J., 2006. Condition and mechanism about chaos formation in the evolution process of groundwater system of minning area. Journal of China Coal Society, 31 (1): 45-49 (in Chinese with English abstract). [10] Yang, Y. G., Yu, Z. W., Guo, Z. T., et al., 1996. A study on application of time domain combined model to the prediction of climatic trend based on geological records. Chinese Journal of Geophysics, 39 (1): 37-46 (in Chinese with English abstract). [11] Yang, Y. G., Yuan, J. F., Chen, S. Z., 2006. R/S analysis and its application in the forecast of mine inflows. J. ChinaUniv. of Mining & Tech, 16 (4): 425-428. [12] Zhang, J., Lam, K. C., Yan, W. J., et al., 2004. Time series prediction using Lyapunov exponents in embedding phase space. Computers and Electrical Engineering, 30 (1): 1-15. doi: 10.1016/S0045-7906(03)00015-6 [13] 吕金虎, 陆君安, 陈士华, 2002. 混沌时间序列分析及其应用. 武汉: 武汉大学出版社. [14] 汤琳, 杨永国, 徐忠杰, 2007. 非线性时间序列分析及其在矿井涌水预测中的应用研究. 工程勘察, (5): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200705006.htm [15] 唐依民, 肖江, 2006. 矿区地下水系统演化过程中混沌性态形成的条件及机理. 煤炭学报, 31 (1): 45-49. doi: 10.3321/j.issn:0253-9993.2006.01.010 [16] 杨永国, 余志伟, 郭正堂, 等, 1996. 基于地质记录用时域组合模型预测气候变化趋势的初步研究. 地球物理学报, 39 (1): 37-46. doi: 10.3321/j.issn:0001-5733.1996.01.005