Simulation of Liesegang Band in Sphalerite in MVT Deposits
-
摘要:
在六方晶系方解石被闪锌矿所交代的假设基础上, 用反应扩散方程建立了六方晶系CNN动力学模拟系统, 模拟了闪锌矿的Liesegang环带结构和矿物晶体中结晶颗粒半径分布.结果表明随着交代作用自外向内的减弱, 闪锌矿矿化强度逐渐减弱, 闪锌矿Fe/Zn比呈振荡变化形成Liesegang环带结构, 并且闪锌矿结晶颗粒半径逐渐减小, 最大结晶颗粒半径与边界的距离服从幂律分布(分形).
-
关键词:
- MVT型矿床 /
- 闪锌矿 /
- CNN /
- Liesegang环带 /
- 幂律
Abstract:Based on a new hypothesis that sphalerites are formed in replacement of hexagonal calcites in Mississippi Valley-type (MVT) deposits, a new cellular nonlinear network (CNN) model is proposed in a hexagonal coordinate system.The simulated results show that the sphalerites formed have Liesegang band textures and the radii of the crystallites oscillating decreases from the rim of the calcite crystal inward.It also shows that the radii of sphalerites decreases from the rim in conformity with the power-law distribution.
-
Key words:
- MVT deposit /
- sphalerite /
- CNN /
- Liesegang band /
- power-law
-
图 1 Liesegang斑图
闪锌矿组分环带结构, 灰度表示FeS含量的变化.样本采自加拿大西北Pine Point矿(Fowler and L'Heureux, 1996)
Fig. 1. Liesegang pattern
-
[1] Anderson, G. M., MacQueen, R. W., 1982. Ore deposit models 6. Mississippi Valley-type lead-zinc deposits. Geosci. Canada, 9: 108-117. [2] Cathles, L. M., Smith, A. T., 1983. Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Economic Geology, 78: 983-1002. doi: 10.2113/gsecongeo.78.5.983 [3] Cheng, Q. M., 2007. Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains. Nonlin. Processes Geophys., 14: 293-303. doi: 10.5194/npg-14-293-2007 [4] Chua, L. O., 1997. CNN: A vision of complexity. International Journal of Bifurcation and Chaos, 7: 2219-2425. doi: 10.1142/S0218127497001618 [5] Dogaru, R., Chua, L. O., 1998. Edge of chaos and local activity domain of Fitz Hugh-Nagumo equation. International Journal of Bifurcation and Chaos, 8 (2): 211-257. doi: 10.1142/S0218127498000152 [6] Droz, M., 2000. Recent theoretical developments on the formation of Liesegang patterns. Journal of Statistical Physics, 101 (1-2): 509-519. [7] Droz, M., Magnin, J., Zrinyi, M., 1999. Liesegang patterns: Studies on the width law. The Journal of Chemical Physics, 110 (19): 9618-9622. doi: 10.1063/1.478927 [8] Etminan, H., Hoffmann, C. F., 1989. Biomarkers in fluid inclusions: A new tool in constraining source regimes and its implications for the genesis of Mississippi Valleytype deposits. Geology (Boulder), 17 (1): 19-22. doi: 10.1130/0091-7613(1989)017<0019:BIFIAN>2.3.CO;2 [9] Feeney, R., Schmidt, S. L., Strickhol m, P., et al., 1983. Periodic precipitation and coarsening waves: Applications of the competitive particle growth model. Journal of Chemical Physics, 78 (3): 1293-1311. doi: 10.1063/1.444867 [10] Ferenc, I., Istán, L., 2005. Simulation of a crossover from the precipitation wave to moving Liesegang pattern formation. J. Phys. Chem. A, 109 (5): 730-733. doi: 10.1021/jp047111v [11] Fowler, A. D., L'Heureux, I., 1996. Self-organized banded sphalerite and branching galena in the pine point ore deposit, Northwest territories. Can. Mineral., 34: 1211-1222. [12] Garven, G., 1985. The role of regional fluid flow in the genesis of the point deposit, western Canada sedimentary basin. Economic Geology, 80 (2): 307-324. doi: 10.2113/gsecongeo.80.2.307 [13] George, J., Varghese, G., 2002. Liesegang patterns: Estimation of diffusion coefficient and a plausible justification for colloid explanation. Colloid & Polymer Science, 280 (12): 1131-1136. [14] Jackson, S. A., Beales, F. W., 1967. An aspect of sedimentary basin evolution: The concentration of Mississippi Valley-type ores during the late stages of diagenesis. Bull. Can. Petrol. Geol. , 15: 393-433. [15] Katsev, S., L'Heureux, I., 2001. Two-dimensional model of banding pattern formation in minerals by means of coarsening waves: Mississippi Valley-type sphalerite. Physics Letters A, 292: 66-74. doi: 10.1016/S0375-9601(01)00767-8 [16] L'Heureux, I., Fowler, A. D., 1996. Isothermal constitutive undercooling as a model for oscillatory zoningin plagioclase. Can. Mineral. , 34: 1137-1147. [17] L'Heureux, I., 2000. Origin of banded patterns in natural sphalerite. Phys. Rev. E, 62 (3): 3234-3245. doi: 10.1103/PhysRevE.62.3234 [18] Maaoe, F. A., Kirkedelen, M. B., Hansen, A., 1998. Liesegang pattern formation by gas diffusion in silica aerogels. Journal of Non-Crystalline Solids, 225 (1): 298-302. [19] Min, L., Crounse, K. R., Chua, L. O., 2000. Analytical criteria for local activity and applications to the Oregonator CNN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10: 2321-2340. [20] Narita, T., Tokita, M., 2006. Liesegang pattern formation in kappa-carrageenan gel. Langmuir, 22 (1): 349-352. doi: 10.1021/la0522350 [21] Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. J. of China University of Geosciences, 19 (1): 77-84. doi: 10.1016/S1002-0705(08)60027-8 [22] Xu, D. Y., Yu, C. W., Bao, Z. Y., 2003a. Edge of chaos and local activity and domain of B-Z CNN. Earth Science Frontiers, 10 (2): 487-491 (in Chinese with English abstract). [23] Xu, D. Y., Yu, C. W., Bao, Z. Y., 2003b. Simulating some complex phenomenain hydrothermal ore-forming processes by reaction-diffusion CNN. J. of China University of Geosciences, 14 (3): 215-219. [24] Yu, J., Namba, Y., 1998. Atomic surface roughness. Applied Physics Letters, 73 (24): 3607-3609. doi: 10.1063/1.122839 [25] 徐德义, 於崇文, 鲍征宇, 2003a. B-Z CNN的局部活性与混沌边缘域. 地学前缘, 10 (2): 487-491. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302040.htm