• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    MVT型矿床中闪锌矿结晶的Liesegang环带模拟

    徐德义 成秋明 王志敬

    徐德义, 成秋明, 王志敬, 2009. MVT型矿床中闪锌矿结晶的Liesegang环带模拟. 地球科学, 34(2): 253-257.
    引用本文: 徐德义, 成秋明, 王志敬, 2009. MVT型矿床中闪锌矿结晶的Liesegang环带模拟. 地球科学, 34(2): 253-257.
    XU De-yi, CHENG Qiu-ming, WANG Zhi-jing, 2009. Simulation of Liesegang Band in Sphalerite in MVT Deposits. Earth Science, 34(2): 253-257.
    Citation: XU De-yi, CHENG Qiu-ming, WANG Zhi-jing, 2009. Simulation of Liesegang Band in Sphalerite in MVT Deposits. Earth Science, 34(2): 253-257.

    MVT型矿床中闪锌矿结晶的Liesegang环带模拟

    基金项目: 

    国家自然科学基金项目 40373003

    国家自然科学基金项目 40502029

    国家自然科学基金项目 40525009

    国家自然科学基金项目 40638041

    地质过程与矿产资源国家重点实验室开放基金 GPMR2007-19

    教育部创新团队基金 IRT0755

    详细信息
      作者简介:

      徐德义(1964—),男,博士,教授,从事数学地质及非线性地质过程研究.E-mail:xdy@cug.edu.cn

    • 中图分类号: P578.2

    Simulation of Liesegang Band in Sphalerite in MVT Deposits

    • 摘要:

      在六方晶系方解石被闪锌矿所交代的假设基础上, 用反应扩散方程建立了六方晶系CNN动力学模拟系统, 模拟了闪锌矿的Liesegang环带结构和矿物晶体中结晶颗粒半径分布.结果表明随着交代作用自外向内的减弱, 闪锌矿矿化强度逐渐减弱, 闪锌矿Fe/Zn比呈振荡变化形成Liesegang环带结构, 并且闪锌矿结晶颗粒半径逐渐减小, 最大结晶颗粒半径与边界的距离服从幂律分布(分形).

       

    • 图  1  Liesegang斑图

      闪锌矿组分环带结构, 灰度表示FeS含量的变化.样本采自加拿大西北Pine Point矿(Fowler and L'Heureux, 1996)

      Fig.  1.  Liesegang pattern

      图  2  空间剖分和编码

      Fig.  2.  Space portioning and coding

      图  3  矿物晶体表面FeS与ZnS摩尔浓度的比例p模拟结果

      外层正六边形边长为n=30, 迭代次数20 000;图中t值为迭代次数, 不同颜色表示p的相对值, 是用Matlab伪着色函数PCOLOR绘制的

      Fig.  3.  Simulated results of the mole fraction of FeS and ZnS

      图  4  结晶颗粒半径模拟结果

      图中x表示结晶颗粒在矿物晶体对角线上的位置, r是颗粒半径, 正六边形边长为n=40, 迭代次数为150 000.a.自矿物晶体中心到边缘晶体颗粒半径分布图; b.矿物晶体半径距离系统边缘距离的分布关系

      Fig.  4.  Radii of the crystallites

    • [1] Anderson, G. M., MacQueen, R. W., 1982. Ore deposit models 6. Mississippi Valley-type lead-zinc deposits. Geosci. Canada, 9: 108-117.
      [2] Cathles, L. M., Smith, A. T., 1983. Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Economic Geology, 78: 983-1002. doi: 10.2113/gsecongeo.78.5.983
      [3] Cheng, Q. M., 2007. Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains. Nonlin. Processes Geophys., 14: 293-303. doi: 10.5194/npg-14-293-2007
      [4] Chua, L. O., 1997. CNN: A vision of complexity. International Journal of Bifurcation and Chaos, 7: 2219-2425. doi: 10.1142/S0218127497001618
      [5] Dogaru, R., Chua, L. O., 1998. Edge of chaos and local activity domain of Fitz Hugh-Nagumo equation. International Journal of Bifurcation and Chaos, 8 (2): 211-257. doi: 10.1142/S0218127498000152
      [6] Droz, M., 2000. Recent theoretical developments on the formation of Liesegang patterns. Journal of Statistical Physics, 101 (1-2): 509-519.
      [7] Droz, M., Magnin, J., Zrinyi, M., 1999. Liesegang patterns: Studies on the width law. The Journal of Chemical Physics, 110 (19): 9618-9622. doi: 10.1063/1.478927
      [8] Etminan, H., Hoffmann, C. F., 1989. Biomarkers in fluid inclusions: A new tool in constraining source regimes and its implications for the genesis of Mississippi Valleytype deposits. Geology (Boulder), 17 (1): 19-22. doi: 10.1130/0091-7613(1989)017<0019:BIFIAN>2.3.CO;2
      [9] Feeney, R., Schmidt, S. L., Strickhol m, P., et al., 1983. Periodic precipitation and coarsening waves: Applications of the competitive particle growth model. Journal of Chemical Physics, 78 (3): 1293-1311. doi: 10.1063/1.444867
      [10] Ferenc, I., Istán, L., 2005. Simulation of a crossover from the precipitation wave to moving Liesegang pattern formation. J. Phys. Chem. A, 109 (5): 730-733. doi: 10.1021/jp047111v
      [11] Fowler, A. D., L'Heureux, I., 1996. Self-organized banded sphalerite and branching galena in the pine point ore deposit, Northwest territories. Can. Mineral., 34: 1211-1222.
      [12] Garven, G., 1985. The role of regional fluid flow in the genesis of the point deposit, western Canada sedimentary basin. Economic Geology, 80 (2): 307-324. doi: 10.2113/gsecongeo.80.2.307
      [13] George, J., Varghese, G., 2002. Liesegang patterns: Estimation of diffusion coefficient and a plausible justification for colloid explanation. Colloid & Polymer Science, 280 (12): 1131-1136.
      [14] Jackson, S. A., Beales, F. W., 1967. An aspect of sedimentary basin evolution: The concentration of Mississippi Valley-type ores during the late stages of diagenesis. Bull. Can. Petrol. Geol. , 15: 393-433.
      [15] Katsev, S., L'Heureux, I., 2001. Two-dimensional model of banding pattern formation in minerals by means of coarsening waves: Mississippi Valley-type sphalerite. Physics Letters A, 292: 66-74. doi: 10.1016/S0375-9601(01)00767-8
      [16] L'Heureux, I., Fowler, A. D., 1996. Isothermal constitutive undercooling as a model for oscillatory zoningin plagioclase. Can. Mineral. , 34: 1137-1147.
      [17] L'Heureux, I., 2000. Origin of banded patterns in natural sphalerite. Phys. Rev. E, 62 (3): 3234-3245. doi: 10.1103/PhysRevE.62.3234
      [18] Maaoe, F. A., Kirkedelen, M. B., Hansen, A., 1998. Liesegang pattern formation by gas diffusion in silica aerogels. Journal of Non-Crystalline Solids, 225 (1): 298-302.
      [19] Min, L., Crounse, K. R., Chua, L. O., 2000. Analytical criteria for local activity and applications to the Oregonator CNN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10: 2321-2340.
      [20] Narita, T., Tokita, M., 2006. Liesegang pattern formation in kappa-carrageenan gel. Langmuir, 22 (1): 349-352. doi: 10.1021/la0522350
      [21] Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. J. of China University of Geosciences, 19 (1): 77-84. doi: 10.1016/S1002-0705(08)60027-8
      [22] Xu, D. Y., Yu, C. W., Bao, Z. Y., 2003a. Edge of chaos and local activity and domain of B-Z CNN. Earth Science Frontiers, 10 (2): 487-491 (in Chinese with English abstract).
      [23] Xu, D. Y., Yu, C. W., Bao, Z. Y., 2003b. Simulating some complex phenomenain hydrothermal ore-forming processes by reaction-diffusion CNN. J. of China University of Geosciences, 14 (3): 215-219.
      [24] Yu, J., Namba, Y., 1998. Atomic surface roughness. Applied Physics Letters, 73 (24): 3607-3609. doi: 10.1063/1.122839
      [25] 徐德义, 於崇文, 鲍征宇, 2003a. B-Z CNN的局部活性与混沌边缘域. 地学前缘, 10 (2): 487-491. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302040.htm
    • 加载中
    图(4)
    计量
    • 文章访问数:  3616
    • HTML全文浏览量:  113
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-11-14
    • 刊出日期:  2009-03-25

    目录

      /

      返回文章
      返回