Accurate Determination of Ni, Ca and Mn in Olivine by EPMA and LA-ICP-MS
-
摘要: 镁铁-超镁铁岩浆岩中的橄榄石斑晶是示踪玄武岩原始岩浆组成, 进而示踪地幔源区组成和演化的最重要矿物.本研究利用电子探针和激光等离子质谱两种方法对橄榄石斑晶中Ni、Ca、Mn等具有重要成因指示意义的少量-微量元素进行准确分析.采用的电子探针方法较常规电子探针分析方法可使元素的检出限降低3~18倍, 并且激光等离子质谱方法对4个国际标准MPI-DING玻璃(KL2-G (玄武岩)、ML3B-G (玄武岩)、StHs6/80-G (安山岩) 和T1-G (石英闪长岩)) 中Mg、Al、Ca、Ti、Cr、Mn、Fe、Co和Ni含量的分析结果与其推荐值大多数相差在±5%之内.两种方法对费县和四合屯同一样品获得的Ca、Ni、Co、Cr、Mg和Fe的含量相差绝大多数情况下小于10%, 表明利用研究建立的电子探针和激光等离子体质谱两种方法均可准确分析橄榄石中的上述元素含量.Abstract: Phenocrystal olivines in mafic and ultramafic magmatic rocks are critical minerals for trace composition of primary mantle-derived magma and in turn to study composition and evolution of the mantle.We have developed two methods for accurate determination of Ni, Ca, Mn and other elements in olivine by EPMA and LA-ICP-MS.These elements are important indicators for the basalt source composition.The limits of detection for these elements are within the range of 7 to 57 (10-6) by using the proposed EPMA analytical method, which are lower than those of the routine EPMA method by a factor of 3-18.In this work, these elements in MPI-DING reference glasses (KL2-G (basalt), ML3B-G (basalt), StHs6/80-G (andesite) and T1-G (quartzdiorite)) were determined at a spatial resolution of 24μm by LA-ICP-MS.All the determined values of MPI-DING reference glasses agree within 8% with the reference values, and most of them agree within 5%, which demonstrated the accuracy of the established analytical methods.The EPMA and LA-ICP-MS were then successfully applied to the determination of Mg, Al, Ca, Ti, Cr, Mn, Fe, Co and Ni in olivine phenocrysts from Early Cretaceous Feixian (western Shandong) and Sihetun (western Liaonin) basalts in the North China craton.Most of the determined values in the same samples determined by EPMA and LA-ICP-MS agree within 10%.This demonstrates the accuracy of our developed EPMA and LA-ICP-MS methods.
-
Key words:
- EPMA /
- LA-ICP-MS /
- olivine /
- trace element
-
表 1 橄榄石标样常规分析方法条件
Table 1. Conditions for routine EPMA analysis
表 2 橄榄石标样本研究分析方法条件
Table 2. Conditions for EPMA analysis of this study
表 3 LA-ICP-MS仪器工作参数
Table 3. Analytical parameters of LA-ICP-MS
-
[1] Fang, N. Q., Niu, Y. L., 2003. Late Palaeozoic ultramafic la-vas in Yunnan, SWChina, and their geodyanmic signifi-cance. Journal of Petrology, 44 (1): 141-157. doi: 10.1093/petrology/44.1.141 [2] Frezzotti, M. L., 2001. Silicate-melt inclusions in magmaticrocks: Applications to petrology. Lithos, 55 (1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7 [3] Gao, S., Liu, X. M., Yuan, H. L., et al., 2002. Determinationof forty-two major and trace elements of USGS andNIST SRMglasses by LA-ICPMS. Geostandard News-letters, 26 (2): 181-196. doi: 10.1111/j.1751-908X.2002.tb00886.x [4] Gao, S., Rudnick, R. L., Xu, W. L., et al., 2008. Recyclingdeep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earthand Plan-etary Science Letters, 270 (1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008 [5] Herzberg, C., O'Hara, M. J., 2002. Plume-associated ultra-mafic magmas of Phanerozoic age. Journal of Petrolo-gy, 43: 1857-1883. doi: 10.1093/petrology/43.10.1857 [6] Hoffmann, A. W., 1997. Mantle geochemistry: The messagefromoceanic volcanism. Nature, 385: 219-229. doi: 10.1038/385219a0 [7] Jochum, K. P., Stoll, B., Herwig, K., et al., 2006. MPI-DINGreference glasses for in situ microanalysis: Newreference values for element concentrations and isotoperatios. Geochemistry Geophysics Geosystems, 7, Q02008, doi: 10.1029/2005GC001060. [8] Jochum, K. P., Willbold, M., Raczek, I., et al., 2005. Chemi-cal characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2Gand BIR-1G using EPMA, ID-TI MS, ID-ICP-MS andLA-ICP-MS. Geostandards and Geoanalytical Re-search, 29 (3): 285-302. doi: 10.1111/j.1751-908X.2005.tb00901.x [9] Longerich, H. P., Jackson, S. E., Günther, D., 1996. Inter-la-boratory note: Laser ablationinductively coupled plasmamass spectrometric transient signal data acquisition andanalyte concentration calculation. Journal of Analyti-cal Atomic Spectrometry, 11: 899-904. doi: 10.1039/JA9961100899 [10] Nisbet, E. G., Cheadle, M. J., Arndt, N. T., et al., 1993. Contrasting the potential temperature of Archean man-tle: Areviewof the evidence fromkomatiites. Lithos, 30 (3-4): 291-307. doi: 10.1016/0024-4937(93)90042-B [11] Roeder, P. L., Emslie, R. F., 1970. Olivine-liquid equilibri-um. Contributions to Mineralogy and Petrology, 29 (4): 275-289. doi: 10.1007/BF00371276 [12] Sobolev, A. V., Hof mann, A. W., Kuzmin, D. V., et al., 2007. The amount of recycled crust in sources of man-tle-derived melts. Science, 316: 412-417. doi: 10.1126/science.1138113 [13] Sobolev, A. V., Hof mann, A. W., Sobolev, S. V., et al., 2005. An olivine-free mantle source of Hawaiian shieldbasalts. Nature, 434: 590-597. doi: 10.1038/nature03411 [14] Thompson, R. N., Gibson, S. A., 2000. Transient high tem-peratures in mantle plume heads inferred from magne-sian olivines in Phanerozoic picrites. Nature, 407: 502-506. doi: 10.1038/35035058 [15] Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Mineral chemistry of peridotites from Paleozoic, Meso-zoic and Cenozoic lithosphere: Constraints on mantleevolution beneath eastern China. Journal of Petrology, 47 (11): 2233-2256. doi: 10.1093/petrology/egl042 [16] Zheng, J. P., Lu, F. X., Yu, C. M., et al., 2006. Peridotitic petrochemistry of one eastern North China: Significancefor lithospheric mantle evolution. Earth Science—Jour-nal of China University of Geosciences, 31 (1): 49-56 (in Chinese with English abstract). [17] 郑建平, 路凤香, 余淳梅, 等, 2006. 华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义, 地球科学——中国地质大学学报, 31 (1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601007.htm