Effect of Magmatic Processes on Fe Oxidation State and of Basaltic Melts: A Case Study for Late Cenozoic Basalts from the Leiqiong Area, South China
-
摘要: 使用幔源岩浆的铁氧化状态估算岩浆fO2是获得地幔氧逸度及岩浆过程对氧逸度影响的有效途径.使用湿化学法对雷琼地区晚新生代玄武岩的主量元素成分进行了分析,并结合一些前人的工作,发现雷琼地区玄武岩的Fe3+/∑Fe比值可分为两组: 一组比值为0.20~0.35,称之正常样品; 另一组比值为0.45~0.66,称之异常样品.采用氧逸度与Fe2O3/FeO之间关系的经验公式对这些玄武岩岩浆的氧逸度进行了估算,正常样品的氧逸度为FMQ+1.1~FMQ+2.4,略高于前人由地幔捕虏体获得的本区地幔氧逸度(FMQ-0.943~FMQ+1.235),这种差异可能是由于计算方法引起的; 而异常样品形成时的氧逸度范围为FMQ+3.3~FMQ+4.8,比地幔源区氧逸度高出2.0log单位以上,不能用计算方法的差异来解释.通过岩浆过程对fO2影响的讨论,认为分离结晶、岩浆脱气以及熔体上升过程中与岩浆通道物质之间的氧交换都不能解释异常样品的高Fe3+/∑Fe比值和氧逸度.许多异常样品采自近火山口,岩浆冷却速度可以引起fO2的重要变化,因为缓慢淬火过程中离子的局部结构调整可以使Fe2+氧化为更小的Fe3+.由此可知,缓慢冷却会使喷出地表的岩浆铁的氧化状态明显提高,所以使用玄武质熔岩估计其源区氧化状态时,应选择远离火山口的熔岩.Abstract: The major element composition of late Cenozoic basalts from Leiqiong area,South China is analyzed by wet chemical method. Coupled with some previous data,Fe3+/∑Fe ratios of these basalts can be divided into two groups,0.20-0.35 (named as normal samples) and 0.45-0.66 (named as abnormal samples). The oxygen fugacity in the basalt formation is calculated by the empirical equation which linked fO2 to Fe2O3/FeO. The relative fO2 of normal samples are about FMQ+1.1 to FMQ+2.4,slight higher than that of the mantle xenoliths found by previous researchers (FMQ-0.943 to FMQ+ 1.235). The difference may be attributed to the calculation methods,but the relative fO2 of abnormal samples are around FMQ+3.3 to FMQ+4.8,2log units higher than that of their source region,and that difference can not be explained in the same way as above. Through discussing the effect of magmatic processes on fO2,it indicates fractional crystallization,degassing and oxygen exchange between ascending melts and crust material and lithospheric material can not result in so large fO2 and high Fe3+/∑Fe ratio in abnormal samples. Many abnormal samples collected from craters and the vicinity of craters are always related to unusual high Fe3+/∑Fe ratios. Thus we believe that the local structure resetting in lavas due to slowly cooling rate,which will oxidize Fe^2+ to a smaller Fe3+ ion for size consideration during the densification process,has led to elevated Fe3+/∑Fe ratios of the basaltic melts. One important conclusion is: to estimate the intrinsic fO2 of the source region from which the basalts derived by Fe oxidation state of these basalts,sampling should be cautious and samples far away from the craters should be selected.
-
Key words:
- magmatic process /
- basalts /
- Fe oxidation state /
- oxygen fugacity /
- Leiqiong area
-
图 1 雷琼新生代火山分布图(a)(据黄镇国和蔡福祥, 1994)和异常样品与火山锥的相对位置(b)
Fig. 1. Sketch map showing distribution of Cenozoic volcanic rocks in Leiqiong area (a) and distribution of the unusual samples and volcanic craters (b)
图 2 雷琼地区新生代玄武岩全铁含量TFe2O3(%)的分布(a), 雷琼新生代玄武岩Fe3+/ ∑Fe摩尔比的分布(b)以及雷琼地区玄武岩形成时的相对氧逸度和地幔捕虏体估计( Liand Wang, 2002)的地幔源区相对氧逸度的分布(c)
Fig. 2. Distribution of TFe2O3 content (a), Fe3+/∑Fe ratio (b) and ΔFMQ of Leiqiong basalts and the oxygen fugacity (c)of mantle source region beneath Leiqiong area
表 1 雷琼地区新生代玄武岩化学成分及相对氧逸度
Table 1. Composition and oxidation state of Leiqiong basalt
-
[1] Ballhaus, C., 1993. Redox states of lithosphe ric and asthenospheric upper mantle. Contributions to Mineralogy and Petrology, 114(3): 331 -348. doi: 10.1007/BF01046536 [2] Bézos, A., Humler, E., 2005. The Fe3+/∑Fe ratio s o f M O RB g lasses and their im plicatio ns fo r mantle melting. Geochimica et Cosmochimica Acta, 69 (3): 711-725. doi: 10.1016/j.gca.2004.07.026 [3] Birnie, D.P., Dyar, M.D., 1986. Coo ling rate calcula tions for silica te glasses. Journal o f Geophy sical Research, 91 (4): D509-D513. [4] Borisov, A.A., Shapkin, A.I., 1990. A new em pirical equation relating the Fe3+/Fe2+ ra tio in na tural melts to co mpositio n, o xyg en fug acity and temperature. Geochemistry International, 27 : 111 -116. [5] Bryndzia, L.T., Wood, B.J., Dick, H.J.B., 1989. T he o xidation state o f the earth's sub-o ceanic mantle from o xy gen the rmobaro metry of aby ssal spinel peridotites. Nature, 341: 526 -527. doi: 10.1038/341526a0 [6] Burgisser, A., Scaillet, B., 2007. Redox evo lution o f a degassing mag ma rising to the surface. Nature, 4451: 194-197. [7] Carmichael, I.S.E., 1991. The redox states o f basic and silicic mag mas : A reflec tion of their source reg io ns? Contributions to Mineralogy and Petrology, 106 (2): 129-141. doi: 10.1007/BF00306429 [8] Carmichael, I.S.E., Ghiorso, M.S., 1986. Oxidation-reduction relatio ns in basic mag ma: Acase for homogeneous equilibria. Contributions to Minera logy and Petrology, 78(2): 200 -210. [9] Dyar, M.D., Naney, M.T., Swanson, S.E., 1987. Effects of quench me tho ds o n Fe3+/ Fe2+ ra tios : A Mö ssbauer and wet-chemical study. American Mineralogist, 72(7 -8): 792-800. [10] Fan, Q.C., Sun, Q., Li, N., et al., 2004. Periods of vo lcanic activity and magma ev olution o f H olocene in N o rth Hainan Island. Acta Petroiogica Sinica, 20(3): 533 - 544 (in Chinese with Eng lish abstract). [11] Flower, M.F.J., Zhang, M., Chen, C.Y., et al., 1992. Magmatism in the So uth China basin : 2. Po st-spreading Q uaternary basalts fro m H ainan Island, South China. Chemical Geology, 97(1): 65-87 [12] Fudali, R.F., 1965. Oxygen fug acitie s of basaltic and a ndesitic mag mas. Geochim. et Cosmochim. Acta, 29 (9): 1063 -1075. doi: 10.1016/0016-7037(65)90103-1 [13] Ge, T.M., Chen, W.J., Xu, X., et al., 1989. The geomag ne tic pola rity time scale of Q ua te rnary fo r Leiqio ng region : T he K-A r dating and palaeomag ne tic evidences fr om igneo us rocks. Acta Geophysica S inica, 32(5): 550 -557 (in Chinese with Eng lish abstract). [14] Ghiorso, M.S., 1997. The rmodynamic mo dels of ig neo us pro ce sses. Annal Reviews of Earth and Planetary Sciences, 25 : 221 -241 doi: 10.1146/annurev.earth.25.1.221 [15] Herd, C.D.K., 2008. Basalts as pro bes o f pla netary inte rio r r edo x state. Reviews in Mineralogy and Geochemistry, 68(1): 527-553 doi: 10.2138/rmg.2008.68.19 [16] Ho, K.S., Chen, J.C., Juang, W.S., 2000. Geo chronolog y and geo chemistry of Late Ceno zo ic basa lts from the Leiqiong a rea, southern China. Journal of Asian Earth Sciences, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0 [17] Huang, Z.G., Cai, F.X., 1994. A new approach to the Q uaternary vo lcanicity in the Leiqiong ar ea. Tropical Geography, 14 (1): 1 -10 (in Chinese with Eng lish abstract) [18] Kennedy, G.C., 1948. Equilibrium be tw een volatiles and iro n o xides in ig neo us rocks. American Journal of Science, 246 : 529-549. doi: 10.2475/ajs.246.9.529 [19] Kilinc, A., Carmichael, I.S.O., Rivers, M.L., et al., 1983. The fer ric-fer rous ra tio of natural silicate liquids equilibrated in air. Contributions to Mineralog y and Petrology, 83(1): 136 -140. [20] Kress, V.C., Carmichael, I.S.E., 1991. The co mpressibility o f silica te liquids containing Fe2O3 and the effect of compo sition, tempera ture, o xy gen fug acity and pr essure o n their redo x sta te s. Contributions to Mineralogy and Petrology, 108(1 -2): 82-92 doi: 10.1007/BF00307328 [21] Li, J.P., Wang, J., 2002. Mantleredox state evolution in eastern China and its implicatio ns. Acta Geologica Sinica, 76(2): 238 -248 [22] Lin, C.Y., Huang, X.L., Xu, Y.G., et al., 2003. Ther mal str ucture and r heo log y o f upper mantle benea th Leizhou P eninsula, G uangdong Pr ovince, China. Journal of Tropical Oceanography, 22(2): 49 -62 (in Chinese w ith Eng lish abstrac t) [23] Liu, C.Q., Li, H.P., Huang, Z.L., et al., 2001. A review of studies on ox yg en fug acity o f the ear th mantle. Earth Science Frontiers, 8(3): 73 -82 (in Chinese w ith English abstract). [24] Liu, Y., Liu, H.C., Li, X.H., 1996. Simultaneo us and precise determination of 40 trace elements in rock samples using ICP-M S. Geochimica, 25(6): 552 -558 (in Chinese with Eng lish abstract) [25] Mathez, E.A., 1984. Influence of deg assing on o xidation states o f ba saltic magma s. Nature, 310 : 371 -375. doi: 10.1038/310371a0 [26] Mattioli, G.S., Wood, B. J, 1986. Upper mantle o xygen fugacity recorded by spinel lherzolites. Nature, 322: 626 -628 doi: 10.1038/322626a0 [27] Middlemost, E.A.K., 1989. I ronoxi dation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1): 19-26. doi: 10.1016/0009-2541(89)90011-9 [28] Mysen, B.O., Carmichael, I.S.E., Virgo, D., 1985. A comparison of iron 57Fe Mössbauer redo x ra tios in silicate glasses determined by w et-chemical and resonant abso rptio n methods. Contributions to Mineralog y and Petrology, 90(2 -3): 101 -106. [29] Rhodes, J.M., Vollinger, M.J., 2005. Fe rric/ fer rous ratios in 1984 M auna Loa lavas : A co ntribution to understanding the o xidatio n state o f Haw aiian mag mas. Contributions to Mineralogy and Petrology, 149(6): 666-674. doi: 10.1007/s00410-005-0662-y [30] Sack, R.O., Carmichael, I.S.E., Rivers, M., et al., 1981. Fer ric-fer rous equilibria in natural silicate liquids at 1 ba r. Contributions to Mineralogy and Petrology, 75 (4): 369 -376. doi: 10.1007/BF00374720 [31] Sato, M., Wright, T.L., 1966. Oxyg en fugacities directly measured in magma tic gases. Science, 153: 1103 -1105. doi: 10.1126/science.153.3740.1103 [32] Sun, J.S., 1991. Cenozoic volcanic activity in the no rthern South China Sea and G uang do ng coastal area. Marine Geology & Quaternary Geology, 11(3): 45 -67 (in Chinese with Eng lish abstract) [33] Tu, K., Flower, M.F.J., Carlson, R.W., 1991. Sr, Nd and Pb iso to pic compositio ns of Hainan basalts(South China): Implica tions for a subcontinental lithospher e Dupal so urce. Geology, 19(6): 567 -569. doi: 10.1130/0091-7613(1991)019<0567:SNAPIC>2.3.CO;2 [34] Xiong, X.L., Cai, Z.Y., Niu, H.C., et al., 2005. The L ate Paleozo ic adakites in ea ste rn T ianshan ar ea and their metallog enetic sig nificance. Acta Petrologica Sinica, 21 (3): 967 -976 (in Chinese with Eng lish abstract) [35] Yu, J.H., O'Reilly, S.Y.O., Griffin, W.L., et al., 2003. T he thermal state and co mpo sitio n o f the lithospheric mantle beneath the L eizho u P eninsula, South China. Journal of Volcanology and Geothermal Research, 122 (3 -4): 165-189. [36] Zhu, B.Q., Wang, H.F., 1989. Nd-Sr-Pb isotopic and chemical evidence fo r the vo lcanism w ith M O RB-O IB so urce cha racte ristics in the Leiqiong area, China. Geochimica, 18(3): 193 -201 (in Chinese with Eng lish abstract). [37] 樊祺诚, 孙谦, 李霓, 等, 2004. 琼北火山活动分期与全新世岩浆演化. 岩石学报, 20(3): 533 -544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403017.htm [38] 葛同明, 陈文寄, 徐行, 等, 1989. 雷琼地区第四纪地磁极性年表———火山岩钾-氩年龄及古地磁学证据. 地球物理学报, 32(5): 550-558. doi: 10.3321/j.issn:0001-5733.1989.05.007 [39] 黄镇国, 蔡福祥, 1994. 雷琼第四纪火山活动的新认识. 热带地理, 14(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD401.000.htm [40] 林传勇, 黄小龙, 徐义刚, 等, 2003. 广东省雷州半岛上地幔热结构和流变学特征. 热带海洋学报, 22(2): 49 -62. doi: 10.3969/j.issn.1009-5470.2003.02.006 [41] 刘丛强, 李和平, 黄智龙, 等, 2001. 地幔氧逸度的研究进展. 地学前缘, 8(3): 73 -82. doi: 10.3321/j.issn:1005-2321.2001.03.009 [42] 刘颖, 刘海臣, 李献华, 1996. 用ICP-M S准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552 -558. doi: 10.3321/j.issn:0379-1726.1996.06.004 [43] 孙嘉诗, 1991. 南海北部及广东沿海新生代火山活动. 海洋地质与第四纪地质, 11(3): 45-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199103007.htm [44] 熊小林, 蔡志勇, 牛贺才, 等, 2005. 东天山晚古生代埃达克岩成因及铜金成矿意义. 岩石学报, 21(3): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503035.htm [45] 朱炳泉, 王惠芬, 1989. 雷琼地区M O RB-O IB过渡型地幔源火山作用的N d-S r-Pb同位素证据. 地球化学, 18(3): 193-201. doi: 10.3321/j.issn:0379-1726.1989.03.001