• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义

    唐功建 王强 赵振华 DerekA·Wyman 陈海红 贾小辉 姜子琦

    唐功建, 王强, 赵振华, DerekA·Wyman, 陈海红, 贾小辉, 姜子琦, 2009. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义. 地球科学, 34(1): 56-74.
    引用本文: 唐功建, 王强, 赵振华, DerekA·Wyman, 陈海红, 贾小辉, 姜子琦, 2009. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义. 地球科学, 34(1): 56-74.
    TANG Gong-jian, WANG Qiang, ZHAO Zhen-hua, Derek A·Wyman, CHEN Hai-hong, JIA Xiao-hui, JIANG Zi-qi, 2009. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization. Earth Science, 34(1): 56-74.
    Citation: TANG Gong-jian, WANG Qiang, ZHAO Zhen-hua, Derek A·Wyman, CHEN Hai-hong, JIA Xiao-hui, JIANG Zi-qi, 2009. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization. Earth Science, 34(1): 56-74.

    西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义

    基金项目: 

    国家重点基础研究发展规划项目 2007CB411308

    国家自然科学基金项目 40721063

    国家自然科学基金项目 40673037

    国家自然科学基金项目 40572042

    中国科学院知识创新项目 KZCX2-YW-128

    详细信息
      作者简介:

      唐功建(1979-),男,博士研究生,岩石地球化学专业.

      通讯作者:

      王强,E-mail: wqiang@gig.ac.cn

    • 中图分类号: P581

    Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization

    • 摘要: 西准噶尔包古图地区的一些小型斑岩体或脉岩与铜金矿化的关系非常密切, 引起了人们的广泛关注.报道了一些斑岩的LA-ICP-MS锆石U-Pb定年结果和岩石地球化学成分资料.Ⅱ、Ⅴ岩体的石英闪长斑岩中岩浆结晶锆石的定年结果分别为314.9±1.7Ma和309.9±1.9Ma, Ⅲ岩体的闪长玢岩中岩浆结晶锆石的定年结果为313.9±2.6Ma, 表明包古图地区的岩体形成于晚石炭世.包古图地区小岩体的岩石富Na、高Sr, 贫Y和Yb, 无明显的Eu异常, 具有埃达克岩特征, 同时有些岩石富集MgO (3.93%~4.78%), 具有高的Mg# (68~74), 类似高镁安山岩.结合区域地质和岩浆岩的资料, 认为: (1) 包古图地区的小岩体形成于晚石炭世的岛弧环境, 并可能与石炭纪的洋脊俯冲有关, 其中埃达克质岩为俯冲洋脊两侧的板片熔融而形成, 而高镁闪长岩类为俯冲板片熔体与地幔橄榄岩相互作用的产物; (2) 包古图地区的铜金矿床也很可能与洋脊俯冲有关, 高氧逸度的板片熔体上升并与地幔橄榄岩相互作用, 这使得地幔中的金属硫化物不稳定, 释放出金属成矿物质, 从而使得Cu、Au等在熔体中不断富集而形成矿床.

       

    • 图  1  中亚造山带地质简图(Jahn et al., 2000) (a) 和西准噶尔地区地质简图(据Buckman and Aitchison, 2004,图 2修改) (b)

      1.花岗岩类; 2.蛇绿岩; 3.铜金矿点; 4.克拉玛依地体(石炭纪); 5.库鲁木地地体(中-早石炭世); 6.拉巴地体(奥陶纪); 7.艾比湖-可可萨依地体(晚志留-早奥陶世); 8.玛依拉地体(早-中志留世); 9.托里地体(中-晚泥盆世); 10.二叠世沉积物/火山沉积物; 11.断层; 12.中生代沉积物; ①唐巴勒; ②玛依拉; ③达拉布特; ④克拉玛依

      Fig.  1.  Geographic map showing Central Asia (modified from Jahn et al., 2000) (a) and regional geological sketch map showing the West Junggar area (modified from Buckman and Aitchison, 2004) (b)

      图  2  包古图矿区地质简图(据成勇和张锐, 2006修改)

      1.希贝库拉斯组; 2.包古图上亚组; 3.包古图下亚组; 4.太古勒组; 5.岩体; 6.断层; 7.金矿点; 8铜矿点; Ⅰ-Ⅴ为岩体编号

      Fig.  2.  Regional geological sketch map showing the Baogutu deposit

      图  3  包古图斑岩LA-ICPMS锆石U-Pb谐和图和锆石CL图像

      Fig.  3.  LA-ICPMS zircon U-Pb concordia diagrams and zircon Cathodoluminescence (CL) images

      图  4  TAS (a) 和AFM (b) 图

      a图据Middlemost (1994); b图据Irvine and Baragar (1971); 数据来源于表 1张锐等(2006)沈远超和金成伟(1993)

      Fig.  4.  (a) TAS and (b) AFM digrams

      图  5  包古图地区斑(玢) 岩稀土元素分布模式(a) 和原始地幔标准化微量元素蜘蛛网(b) (标准化数据据Sun and McDonough, 1989; 阴影部分的数据来源于张连昌(2006))

      Fig.  5.  (a) The chondrite-normalized rare earth element (REE) patterns and (b) primitive mantle-normalized multi-element plots

      图  6  包古图地区斑(玢) 岩Sr/Y-Y图(Defant and Drummond, 1993)

      数据来源于表 1, 克拉玛依岩体数据来自于(Chen and Arakawa, 2005)

      Fig.  6.  Sr/Y-Y diagram

      图  7  SiO2-MgO (a) 和SiO2-Mg# (b) 图

      数据来源于表 1张锐等(2006)沈远超和金成伟(1993), 底图转引自(王强等, 2006b)

      Fig.  7.  SiO2-MgO (a) and SiO2-Mg# (b) diagrams

      图  8  西准噶尔地区花岗岩体的锆石U-Pb年龄直方图

      数据除本次研究外还包括Xian et al. (2003)刘志强等(2005)高山林等(2006)韩宝福等(2006)徐新等(2006)袁峰等(2006)Zhou et al. (2006, 2007)

      Fig.  8.  Age histograms for the grantoids in the West Junggar

      表  1  包古图成矿斑(玢) 岩主量(%)、微量(10-6) 元素组成

      Table  1.   Major element (%) and trace element (10-6) compositions of the Baogutu porphyries (porphyrites)

      表  2  包古围成矿(玢)岩锆石LA-ICPMS定年结果

      Table  2.   Zircon LA-ICPMS dating of porphyries (porphyrite) in the Baogutu

    • [1] Atherton, M. P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362 (6416): 144-146. doi: 10.1038/362144a0
      [2] Bellon, H., Aguillon-Robles, A., Calmus, T., et al., 2006. La Purisirna volcanic field, Baja California Sur (Mexico): Miocene to quaternary volcanism related to subduction and opening of an asthenospheric window. Journal of Volcanology and Geothermal Research, 152 (3-4): 253-272. doi: 10.1016/j.jvolgeores.2005.10.005
      [3] Bissig, T., Clark, A., Lee, J., et al., 2003. Petrogenetic and metallogenetic responses to Miocene slab flattening: New constraints from the El Indio-Pascua Au-Ag-Cu belt, Chile/Argentina. Mineralium Deposita, 38 (7): 844-862. doi: 10.1007/s00126-003-0375-y
      [4] Buckman, S., Aitchison, J. C., 2004. Tectonic evolution of Palaeozoic terranes in West Junggar, Xinjiang, NW China. Geological Society, London, Special Publications, 226 (1): 101-129. doi: 10.1144/GSL.SP.2004.226.01.06
      [5] Cande, S. C., Leslie, R. B., 1986. Late Cenozoic tectonics of the southern Chile trench. Journal of Geophysical Research, 91 (B1): 471-496. doi: 10.1029/JB091iB01p00471
      [6] Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134 (1): 33-51. doi: 10.1007/s004100050467
      [7] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69 (5): 1307-1320. doi: 10.1016/j.gca.2004.09.019
      [8] Chen, B., Jahn, B. M., 2004. Genesis of post-collisional granitoids and basement nature of the Junggar terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23 (5): 691-703. doi: 10.1016/S1367-9120(03)00118-4
      [9] Cheng, Y., Zhang, R., 2006. Mineralization regularity of CU-AU deposits in the Baogutu area, western Jungar, Xinjiang. Geology and Prospecting, 42 (4): 11-15 (in Chinese with English abstract).
      [10] Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31 (11): 1021-1024. doi: 10.1130/G19796.1
      [11] Cole, R. B., Nelson, S. W., Layer, P. W. et al., 2006. Eocene volcanism above a depleted mantle slab window in southern Alaska. Geol. Soc. Am. Bull, 118 (1-2): 140-158. doi: 10.1130/B25658.1
      [12] Coleman, R. G., 1989. Continental growth of northwest China. Tectonics, 8 (3): 621-635. doi: 10.1029/TC008i003p00621
      [13] Condie, K. C., 2005. TTGs and adakites: Are they both slab melts? Lithos, 80 (1-4): 33-44. doi: 10.1016/j.lithos.2003.11.001
      [14] Defant, M. J., Drummond, M. S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347 (6294): 662-665. doi: 10.1038/347662a0
      [15] Defant, M. J., Drummond, M. S., 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21 (6): 547-550.
      [16] Defant, M. J., Kepezhinskas, P., 2001. Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs. EOS, 82: 5.
      [17] Defant, M. J., Xu, J. F., Kepezhinskas, P., et al., 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica, 18 (2): 129-142.
      [18] Eby, G. N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26 (1-2): 115-134. doi: 10.1016/0024-4937(90)90043-Z
      [19] Eby, G. N., 1992. Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications. Geology, 20 (7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      [20] Feng, Y., Coleman, R. G., Tilton, G., et al., 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. Tectonics, 8 (4): 729-752. doi: 10.1029/TC008i004p00729
      [21] Gao, J., Long, L. L., Qian, Q., et al., 2006. South Tianshan: A Late Paleozoic or a Triassic orogen? Acta Petrologica Sinica, 22 (5): 1049-1061 (in Chinese with English abstract).
      [22] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling lower continental crust in the North China craton. Nature, 432 (7019): 892-897. doi: 10.1038/nature03162
      [23] Gao, S. L., He, Z. L., Zhou, Z. Y., 2006. Geochemical characteristics of the Karamay granitoids and their significance in West Junggar, Xinjiang. Xinjiang Geology, 24 (2) (in Chinese with English abstract).
      [24] Guivel, C., Lagabrielle, Y., Bourgois, J., et al., 1999. New geochemical constraints for the origin of ridge-subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP141 on the Taitao ridge). Tectonophysics, 311 (1-4): 83-111. doi: 10.1016/S0040-1951(99)00160-2
      [25] Haeussler, P. J., Bradley, D. C., Goldfarb, R. J., et al., 1995. Link between ridge subduction and gold mineralization in southern Alaska. Geology, 23 (11): 995-998. doi: 10.1130/0091-7613(1995)023<0995:LBRSAG>2.3.CO;2
      [26] Haeussler, P. J., Bradley, D. C., Goldfarb, R. J., 2003. Brittle deformation along the Gulf of Alaska margin in response to Paleocene-Eocene triple junction migration. In: Sisson, V. B., Pavlis, T. L., Roeske, S. M., et al., eds., Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Geological Society of America, Special Paper, 391: 119-140.
      [27] Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic vertical growth of continental crust around the Junggar basin, Xinjiang, China (Part Ⅰ): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22 (5): 1077-1086 (in Chinese with English abstract).
      [28] He, G. Q., Liu, J. B., Zhang, Y. Q., et al., 2007. Keramay ophiolitic melange formed during Early Paleozoic in western Junggar basin. Acta Petrologica Sinica, 23: 1573-1576 (in Chinese with English abstract).
      [29] Hou, M. L., Jiang, Y. H., Jiang, S. Y., et al., 2007. Contrasting origins of Late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, East China: Implications for crustal thickening to delamination. Geological Magazine, 144 (4): 619-631. doi: 10.1017/S0016756807003494
      [30] Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220 (1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X
      [31] Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg adakitic rocks in the Dabie orogen, Central China: Implications for foundering mechanism of lower continental crust. Chemical Geology, 255 (1-2): 1-13. doi: 10.1016/j.chemgeo.2008.02.014
      [32] Huang, J. Q., Jiang, C. F., Wang, Z. X., 1990. Plate tectonics and accordion-style of Xinjiang and its adjacent area. Xingjiang Geology Science, 1 (1): 3-16 (in Chinese).
      [33] Hung, C., Chung, S., Cole, R., et al., 2007. Zircon U-Pb ages for the McKinley Sequence and associated plutons, Central Alaska range. Eos. Trans. AGU, 88 (52): Abstract T11B-0574.
      [34] Irvine, T. N., Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5): 523-548. doi: 10.1139/e71-055
      [35] Jahn, B. M., Capdevila, R., Liu, D., et al., 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23 (5): 629-653. doi: 10.1016/S1367-9120(03)00125-1
      [36] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23 (2): 82-92. doi: 10.18814/epiiugs/2000/v23i2/001
      [37] Jian, P., Liu, D. Y., 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the Central Asian orogenic belt. In: Sklyarov, E. V., ed., Structural and tectonic correlation across the Central Asian orogenic collage: Northeastern segment. Guidebook and abstract volume of the Siberian workshop IGCP-480, 246.
      [38] Jian, P., Liu, D. Y., Kroner, A., et al., 2008. Time scale of an Early to Mid-Paleozoic orogenic cycle of the long-lived Central Asian orogenic belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101 (3-4): 233-259. doi: 10.1016/j.lithos.2007.07.005
      [39] Kamei, A., 2004. An adakitic pluton on Kyushu Island, southwest Japan arc. Journal of Asian Earth Sciences, 24 (1): 43-58. doi: 10.1016/j.jseaes.2003.07.001
      [40] Kay, R. W., 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4 (1-2): 117-132. doi: 10.1016/0377-0273(78)90032-X
      [41] Kay, R. W., Kay, S. M., 1993. Delamination and delamination magmatism. Tectonophysics, 219 (1-3): 177-189. doi: 10.1016/0040-1951(93)90295-U
      [42] Kim, S. W., Oh, C. W., Choi, S. G., et al., 2005. Ridge subduction-related Jurassic plutonism in and around the Okcheon metamorphic belt, South Korea, and implications for Northeast Asian tectonics. International Geology Review, 47 (3): 248-269. doi: 10.2747/0020-6814.47.3.248
      [43] Kinoshita, O., 1997. Slab window-related magmatism caused by the Kula-Pacific ridge subduction beneath the Eurasia continent in the Cretaceous. Episodes, 20 (3): 185-187. doi: 10.18814/epiiugs/1997/v20i3/007
      [44] Kinoshita, O., 1999. A migration model of magmatism explaining a ridge subduction, and its details on a statistical analysis of the granite ages in Cretaceous Southwest Japan. Island Arc, 8 (2): 181-189. doi: 10.1046/j.1440-1738.1999.00230.x
      [45] Kinoshita, O., 2002. Possible manifestations of slab window magmatisms in Cretaceous southwest Japan. Tectonophysics, 344 (1-2): 1-13. doi: 10.1016/S0040-1951(01)00262-1
      [46] Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. Journal of Asian Earth Sciences, 23 (5): 605-627. doi: 10.1016/S1367-9120(03)00130-5
      [47] Kwon, S. T., Tilton, G. R., Coleman, R. G., et al., 1989. Isotopic studies bearing on the tectonics of the West Junggar region, Xinjiang, China. Tectonics, 8 (4): 719-727. doi: 10.1029/TC008i004p00719
      [48] Li, H. Q., Chen, F. W., Cai, H., 2000. Study on Rb-Sr isotopic ages of gold deposits in West Junggar area, Xinjiang. Acta Geologica Sinica, 74 (2): 181-192 (in Chinese with English abstract).
      [49] Li, X. H., 1997. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China. Geochemical Journal, 31: 323-337. doi: 10.2343/geochemj.31.323
      [50] Li, X. H., Qi, C. S., Liu, Y., et al., 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze block: New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50 (21): 2481-2486. doi: 10.1360/982005-287
      [51] Li, X. Z., Han, B. F., Ji, J. Q., et al., 2004. Geology, geochenistry and K-Ar ages of the Karamay basic-intermediate dyke swarm from Xinjiang, China. Geochimica, 33 (6): 574-584 (in Chinese with English abstract).
      [52] Liu, D. Y., Jian, P., Kroner, A., et al., 2008. Early Paleozoic ridge-trench interaction in the Central Asian orogenic belt of Inner Mongolia, China. American Journal of Science (in press).
      [53] Liu, S., Hu, R. Z., Feng, C. X., et al. 2008. Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: Geochemical and isotopic evidence for the origin of delaminated lower continental melts. Geological Magazine, 145 (4): 463-474. doi: 10.1017/S0016756808004548
      [54] Liu, W., Pan, X. F., 2006. Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion: The mantle dynamics underneath the Palaeo-Asian Ocean through to the post-collisional period. Earth and Planetary Science Letters, 242 (3-4): 286-301. doi: 10.1016/j.epsl.2005.11.059
      [55] Liu, X. J., Xu, J. F., Hou, Q. Y., et al., 2007. Geochemical characteristics of Karamaili ophiolite in East Junggar, Xinjiang: Products of ridge subduction. Acta Petrologica Sinica, 23: 1591-1602 (in Chinese with English abstract).
      [56] Liu, Z. Q., Han, B. F., Ji, J. Q., et al., 2005. Ages and geochemistry of the post-collisional granitic rocks from eastern Alataw Mountains, Xinjiang, and implications for vertical crustal growth. Acta Petrologica Sinica, 21 (3): 623-639 (in Chinese with English abstract).
      [57] Ludwig, K. R., 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1-70.
      [58] Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243 (3-4): 581-593. doi: 10.1016/j.epsl.2005.12.034
      [59] Manya, S., Maboko, M. A. H., Nakamura, E., 2007. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara greenstone belt, northern Tanzania: Possible evidence for Neoarchaean ridge subduction? Precambrian Research, 159 (3-4): 241-259. doi: 10.1016/j.precamres.2007.07.002
      [60] Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79 (1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048
      [61] Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc., 6 (1): 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
      [62] Marwama, S., 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc., 6: 91-120. doi: 10.1111/j.1440-1738.1997.tb00042.x
      [63] Middlemost, E. A. K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Rev., 37: 215-224. doi: 10.1016/0012-8252(94)90029-9
      [64] Mungall, J. E., 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 915-918.
      [65] Oyarzun, R., Márquez, A., Lillo, J., et al., 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36 (8): 794-798. doi: 10.1007/s001260100205
      [66] Pallares, C., Maury, R. C., Bellon, H., et al., 2007. Slab-tearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, Mexico. Journal of Volcanology and Geothermal Research, 161 (1-2): 95-117. doi: 10.1016/j.jvolgeores.2006.11.002
      [67] Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37 (6): 1491-1521. doi: 10.1093/petrology/37.6.1491
      [68] Qian, Q., Gao, J., Klemd, R., et al., 2007. Early Paleozoic tectonic evolution of the Chinese South Tianshan orogen: Constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China. International Journal of Earth Sciences, DOI: 10.1007/s00531-007-0268-x.
      [69] Rabbia, O., Hernández, L., King, R., et al., 2002. Discussion on "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001). Mineralium Deposita, 37 (8): 791-794.
      [70] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160 (4): 335-356. doi: 10.1016/S0009-2541(99)00106-0
      [71] Reich, M., Parada, M., Palacios, C., et al., 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of Central Chile: Metallogenic implications. Mineralium Deposita, 38 (7): 876-885. doi: 10.1007/s00126-003-0369-9
      [72] Richards, J., 2002. Discussion on "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001). Mineralium Deposita, 37 (8): 788-790.
      [73] Richards, J. P., Kerrich, R., 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102 (4): 537-576. doi: 10.2113/gsecongeo.102.4.537
      [74] Sajona, F. G., Maury, R. C., 1998. Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l'Academie des Sciences Series ⅡA Earth and Planetary Science, 326 (1): 27-34.
      [75] Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364 (6435): 299-307. doi: 10.1038/364299a0
      [76] Shen, Y. C., Jin, C. W., 1993. The relationships of magma activity and gold mineralization in West Junggar. Science Press, Beijing (in Chinese).
      [77] Shen, Y. C., Jin, C. W., Qi, J. Y., 1993. Gold metallogenetic law and forming mechanism in west Junggar mineralized concentrating region. In: Tu, G. C., ed., New improvement of solid geosciences in northern Xinjiang. Science Press, Beijing, 295-310 (in Chinese).
      [78] Sisson, V. B., Pavlis, T. L., Roeske, S. M., et al., 2003. Introduction: An overview of ridge-trench interactions in modern and ancient settings. In: Sisson, V. B., Pavlis, T. L., Roeske, S. M., et al., eds., Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Geological Society of America, Special Paper, 1-18.
      [79] Song, H. X., Liu, Y. L., Qu, W. J., et al., 2007. Geological characters of Baogutu porphyry copper deposit in Xinjiang, NW China. Acta Petrologica Sinica, 23 (8): 1981-1988 (in Chinese with English abstract).
      [80] Su, Y. P., Tang, H. F., Hou, G. S., et al., 2006. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar, Xinjiang. Geochima, 35 (1): 55-67 (in Chinese with English abstract).
      [81] Suarez, M., De La Cruz, R., 2001. Jurassic to Miocene K-Ar dates from eastern Central Patagonian Cordillera plutons, Chile (45°-48°S). Geological Magazine, 138 (1): 53-66. doi: 10.1017/S0016756801004903
      [82] Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [83] Thieblemont, D., Stein, G., Lescuyer, J. L., 1997. Epithermal and porphyry deposits: The adakite connection. CR Acad. Sci. Ⅱ A, 325 (2): 103-109.
      [84] Wang, F. T., 2006. The palacegeographic and geo-ecological Atlas of Xinjiang Uygur Autonomous region. SinoMaps Press, Beijing (in Chinese).
      [85] Wang, F. Z., Yang, M. Z., Zhen, J. P., 2002. Geochemical evidence of the basement assembled by island arc volcanics terranes in Junggar basin. Acta Petrologica et Mineralogica, 21 (1): 1-10 (in Chinese with English abstract).
      [86] Wang, Q., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 33 (6): 465-468. doi: 10.1130/G21522.1
      [87] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007a. Early Cretaceous adakitic granites in the northern Dabie complex, Central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71 (10): 2609-2636. doi: 10.1016/j.gca.2007.03.008
      [88] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007b. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization. Journal of Geology, 115 (2): 149-161. doi: 10.1086/510643
      [89] Wang, Q., Wyman, D. A., Zhao, Z. H., et al., 2007c. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236 (1-2): 42-64. doi: 10.1016/j.chemgeo.2006.08.013
      [90] Wang, Q., Xu, J. F., Jian, P., et al., 2006a. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47 (1): 119-144. doi: 10.1093/petrology/egi070
      [91] Wang, Q., Zhao, Z. H., Xu, J. F., et al., 2006b. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia orogenic belt and Cu-Au mineralization. Acta Petrologica Sinica, 22 (1): 11-30 (in Chinese with English abstract).
      [92] Wang, Q., Xu, J. F., Zhao, Z. H., 2003. Intermediate-acid igneous rocks strongly depleted in heavy rare earth elements (or adakitic rocks) and copper-gold metallogenesis. Earth Science Frontiers, 10 (4): 561-572 (in Chinese with English abstract).
      [93] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95 (4): 407-419. doi: 10.1007/BF00402202
      [94] Wilson, M., 1989. Igneous petrogenesis. Springer, London, 1-466.
      [95] Windley, B. F., Alexeiev, D., Xiao, W., et al., 2007. Tectonic models for accretion of the Central Asian orogenic belt. Journal of the Geological Society, 164 (1): 31-47. doi: 10.1144/0016-76492006-022
      [96] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187 (1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9
      [97] Xian, W. S., Sun, M., Zhang, L. F., et al., 2003. Late Paleozoic vertical crustal growth of western Junggar, Xinjiang in China: Evidence from petrology and Ndisotope in charnockites and alkaline granites. Geophysical Research Abstracts, 5.
      [98] Xiao, L., Clemens, J. D., 2007. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos, 95 (3-4): 399-414. doi: 10.1016/j.lithos.2006.09.002
      [99] Xiao, W. J., Han, C. M., Yuan, C., et al., 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain. Acta Petrologica Sinica, 22 (5): 1062-1076 (in Chinese with English abstract).
      [100] Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004a. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, 161 (3): 339-342. doi: 10.1144/0016-764903-165
      [101] Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004b. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304 (4): 370-395. doi: 10.2475/ajs.304.4.370
      [102] Xiao, X. C., Tang, Y. Q., Feng, Y. M., et al., 1992. Tectonic evolution of the north Xinjiang and its adjacent region. Geological Publishing House, Beijing, 1-180 (in Chinese).
      [103] Xiao, X. C., Tang, Y. Q., 1991. On tectonic evolution of the southern margin of the paleozoic composite megastuture zone. Beijing Technol. Press, Beijing, 1-150 (in Chinese).
      [104] Xiao, X. C., Tang, Y. Q., Li, J. Y., et al., 1991. On tectonic evolution of the southern margin of the paleozoic composite megasuture zone. Beijing Technol. Press, Beijing, 1-150 (in Chinese).
      [105] Xiong, X. L., Cai, Z. Y., Niu, H. C., et al., 2005. The late Paleozoic adakites in eastern Tianshan area and their metallogenetic significance. Acta Petrologica Sinica, 21 (3): 967-976 (in Chinese with English abstract).
      [106] Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: Partial melting of delaminated lower continental crust? Geology, 30 (12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
      [107] Xu, X., He, G. Q., Li, H. Q., et al., 2006. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating. Geology in China, 33 (3): 470-475 (in Chinese with English abstract).
      [108] Xu, X. Y., Li, X. M., Ma, Z. P., et al., 2006. LA-ICPMS zircon U-Pb dating of gabbro from the Bayingou ophiolite in the northern Tianshan Mountains. Acta Geologica Sinica, 80 (8): 1168-1176 (in Chinese with English abstract).
      [109] Yakubchuk, A., 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: Similarity and diversity of structural patterns and metallogenic zoning. Geological Society of London, Special Publications, 204 (1): 273-297. doi: 10.1144/GSL.SP.2002.204.01.16
      [110] Yakubchuk, A., 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. Journal of Asian Earth Sciences, 23 (5): 761-779. doi: 10.1016/j.jseaes.2004.01.006
      [111] Yogodzinski, G. M., Kay, R. W., Volynets, O. N., et al., 1995. Magnesian andesite in the western Aleutian Komandorsky region-Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107 (5): 505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
      [112] Yuan, F., Zhou, T. F., Tan, L. G., et al., 2006. Isotopic ages of the I type granitesin west Junggar Sawuer region. Acta Petrologica Sinica, 22 (5): 1238-1248 (in Chinese with English abstract).
      [113] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geoanalytical and Geostandard Newsletters, 28 (3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
      [114] Zhang, C., Huang, X., 1992. Age and tectonic settings of ophiolites in West Junggar, Xinjiang. Geological Review, 38 (6): 509-524 (in Chinese with English abstract).
      [115] Zhang, C., Zhai, M. G., Allen, M. B., et al., 1993. Implications of Paleozoic ophiolites from western Junggar, NW China, for the tectonics of Central Asia. Journal of the Geological Society, 150 (3): 551-561. doi: 10.1144/gsjgs.150.3.0551
      [116] Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152 (1): 75-88. doi: 10.1007/s00410-006-0095-2
      [117] Zhang, L. C., Xiao, W. J., Qin, K. Z., et al., 2006b. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: Trace element and Sr-Nd-Pb isotope geochemistry. Mineralium Deposita, 41 (2): 188-200. doi: 10.1007/s00126-006-0058-6
      [118] Zhang, L. C., Wan, B., Jiao, X. J., et al., 2006a. Characteristics and geological significance of adakitic rocks in copper-bearing porphyry in Baogutu, western Junggar. Geology in China, 33 (3): 626-631 (in Chinese with English abstract).
      [119] Zhang, Q., Qian, Q., Wang, E. Q., 2001. An East China Plateau in Mid-Late Yanshanian period: Implication from adakites. Chinese Journal of Geology, 36 (2): 248-255 (in Chinese with English abstract).
      [120] Zhang, Q., Qin, K. Z., Wang, Y., et al., 2004. Study on adakite broadened to challenge the Cu and Au exploration in China. Acta Petrologica Sinica, 20 (2): 195-204 (in Chinese with English abstract).
      [121] Zhang, R., Zhang, Y. X., Tong, G. S., et al., 2006. Major breakthrough in copper exploration in the Baogutu porphyry copper deposit, western Junggar, Xinjiang, and its significance. Geology in China, 33 (6): 1354-1360 (in Chinese with English abstract).
      [122] Zheng, J. P., Sun, M., Zhao, G. C., et al., 2007. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: Implications for the formation and evolution of the basin basement. Journal of Asian Earth Sciences, 29 (5-6): 778-794. doi: 10.1016/j.jseaes.2006.05.004
      [123] Zhou, M. F., Michael, L. C., Yang, Z. G., et al., 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu- (PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209 (3-4): 233-257. doi: 10.1016/j.chemgeo.2004.05.005
      [124] Zhou, T. F., Tan, L. G., Fan, Y., et al., 2007. SHRIMP U-Pb zircon age of the Ka'erjiao intrusion in the Sawur region in West Junggar, Xinjiang. Acta Geologica Sinica, 81 (2): 322-329. doi: 10.1111/j.1755-6724.2007.tb00955.x
      [125] Zhou, T. F., Yuan, F., Tan, L. G., et al., 2006. Geodynamic significance of the A-type granites in the Sawuer region in West Junggar, Xinjiang: Rock geochemistry and SHRIMP zircon age evidence. Science in China (Ser. D), 49 (2): 113-123. doi: 10.1007/s11430-005-0121-7
      [126] Zhu, B. Q., Feng, Y. M., 1994. Plate tectonics and evolution in West Junggar of Xinjiang. Xinjiang Geology, 12 (2): 91-105 (in Chinese with English abstract).
      [127] 成勇, 张锐, 2006. 新疆西准包古图地区铜金矿成矿规律浅析. 地质与勘探, 42 (4): 11-15. doi: 10.3969/j.issn.0495-5331.2006.04.003
      [128] 高俊, 龙灵利, 钱青, 等, 2006. 南天山: 晚古生代还是三叠纪碰撞造山带?岩石学报, 22 (5): 1049-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605001.htm
      [129] 高山林, 何治亮, 周祖翼, 2006. 西准噶尔克拉玛依花岗岩体地球化学特征及其意义. 新疆地质, 24 (2): 125-130. doi: 10.3969/j.issn.1000-8845.2006.02.006
      [130] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22 (5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
      [131] 何国琦, 刘建波, 张越迁, 等, 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂带的厘定. 岩石学报, 23 (7): 1573-1576. doi: 10.3969/j.issn.1000-0569.2007.07.002
      [132] 黄汲清, 姜春发, 王作勋, 1990. 新疆及邻区板块构造及手风琴式运动. 新疆地质科学, 1 (1): 3-16.
      [133] 金成伟, 沈远超, 张秀棋, 等, 1993. 西准噶尔岩浆活动及其与构造环境和金矿化的关系. 见: 涂光炽主编, 新疆北部固体地球科学新进展. 北京: 科学出版社, 137-150.
      [134] 李华芹, 陈富文, 蔡红, 2000. 新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究. 地质学报, 74 (2): 181-192. doi: 10.3321/j.issn:0001-5717.2000.02.009
      [135] 李辛子, 韩宝福, 季建清, 等, 2004. 新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代学. 地球化学, 33 (6): 574-584. doi: 10.3321/j.issn:0379-1726.2004.06.005
      [136] 刘希军, 许继峰, 侯青叶, 等, 2007. 新疆东准噶尔克拉麦里蛇绿岩地球化学: 洋脊俯冲的产物. 岩石学报, 23 (7): 1591-1602. doi: 10.3969/j.issn.1000-0569.2007.07.004
      [137] 刘志强, 韩宝福, 季建清, 等, 2005. 新疆阿拉套山东部后碰撞岩浆活动的时代、地球化学性质及其对陆壳垂向增长的意义. 岩石学报, 21 (3): 623-639. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503006.htm
      [138] 沈远超, 金成伟, 1993. 西准噶尔地区岩浆活动与金矿化关系. 新疆北部地球科学系列书. 北京: 科学出版社.
      [139] 沈远超, 金成伟, 齐进英, 等, 1993. 西准噶尔金矿化集中区的成矿模式和形成机理. 见: 涂光炽主编, 新疆北部固体地球科学新进展. 北京: 科学出版社, 295-310.
      [140] 宋会侠, 刘玉琳, 屈文俊, 等, 2007. 新疆包古图斑岩铜矿矿床地质特征. 岩石学报, 23 (8): 1981-1988. doi: 10.3969/j.issn.1000-0569.2007.08.018
      [141] 苏玉平, 唐红峰, 侯广顺, 等, 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35 (1): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200601006.htm
      [142] 王方正, 杨梅珍, 郑建平, 2002. 准噶尔盆地岛弧火山岩地体拼合基底的地球化学证据. 岩石矿物学杂志, 21 (1): 1-10. doi: 10.3969/j.issn.1000-6524.2002.01.001
      [143] 王福同, 2006. 新疆维吾尔自治区古地理及地质生态图集. 北京: 中国地图出版社.
      [144] 王强, 许继峰, 赵振华, 2003. 强烈亏损重稀土元素的中酸性火成岩(或埃达克质岩) 与Cu、Au成矿作用. 地学前缘, 10 (4): 561-572. doi: 10.3321/j.issn:1005-2321.2003.04.022
      [145] 王强, 赵振华, 许继峰, 等, 2006b. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22 (1): 11-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601002.htm
      [146] 肖文交, 韩春明, 袁超, 等, 2006. 新疆北部石炭纪—二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22 (5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm
      [147] 肖序常, 汤耀庆, 1991. 古中亚复合巨型缝合带南缘构造演化. 北京: 科学技术出版社, 1-150.
      [148] 肖序常, 汤耀庆, 冯益民, 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社, 1-180.
      [149] 熊小林, 蔡志勇, 牛贺才, 等, 2005. 东天山晚古生代埃达克岩成因及铜金成矿意义. 岩石学报, 21 (3): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503035.htm
      [150] 徐新, 何国琦, 李华芹, 等, 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33 (3): 470-475. doi: 10.3969/j.issn.1000-3657.2006.03.003
      [151] 徐学义, 李向民, 马中平, 等, 2006. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据. 地质学报, 80 (8): 1168-1176. doi: 10.3321/j.issn:0001-5717.2006.08.010
      [152] 袁峰, 周涛发, 谭绿贵, 等, 2006. 西准噶尔萨吾尔地区Ⅰ型花岗岩同位素精确定年及其意义. 岩石学报, 22 (5): 1238-1248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605015.htm
      [153] 张弛, 黄萱, 1992. 新疆西准噶尔蛇绿岩形成时代和环境的探讨. 地质论评, 38 (6): 509-524. doi: 10.3321/j.issn:0371-5736.1992.06.009
      [154] 张连昌, 万博, 焦学军, 等, 2006a. 西准包古图含铜斑岩的埃达克岩特征及其地质意义. 中国地质, 33 (3): 626-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603019.htm
      [155] 张旗, 钱青, 王二七, 2001. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 36 (2): 248-255. doi: 10.3321/j.issn:0563-5020.2001.02.014
      [156] 张旗, 秦克章, 王元龙, 等, 2004. 加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面. 岩石学报, 20 (2): 195-204. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200412002054.htm
      [157] 张锐, 张云孝, 佟更生, 等, 2006. 新疆西准包古图地区斑岩铜矿找矿的重大突破及意义. 中国地质, 33 (6): 1354-1360. doi: 10.3969/j.issn.1000-3657.2006.06.019
      [158] 朱宝清, 冯益民, 1994. 新疆西准噶尔板块构造及演化. 新疆地质, 12 (2): 91-105. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI402.000.htm
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  3576
    • HTML全文浏览量:  76
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-10-30
    • 刊出日期:  2009-01-25

    目录

      /

      返回文章
      返回