Molecular Organic Geochemical Record of Paleoenvironmental Changes of Core 17937 in Northern South China Sea Since 40 ka
-
摘要: 以分子有机地球化学为手段对南海北部四万年来的古环境古气候研究表明, U37k’-SST表层水温在冰期、间冰期平均范围分别为27℃和24℃, LGM与全新世温差达4.5℃; 以高分子量烷烃所代表的陆源物质输入和长链不饱和酮化合物所代表的海洋初级生产力都呈现冰期高、间冰期低特征, 表明冰期时陆源物质输入的增加和海洋表层生产力的提高; 正构烷烃C31/C27记录了南方大陆的植被由冰期时草本植物占优势向间冰期时木本植物占优势的转变.说明南海在末次冰期以来气候的不稳定性, 和海陆生态系统对气候变化的响应以及分子有机地球化学在古环境古气候研究中的巨大潜力.Abstract: Molecular organic geochemical analysis of Core 17937 in the northern South China Sea has provided useful information on the paleoenvironmental change in the 40 ka and revealed that the average surface temperature of U37k'-SSTs in glacial and interglacial is 27 ℃ and 24 ℃ respectively, resulting in a difference of 4.5 ℃ between Holocene and LGM.The terrestrial input, mainly consisting of high molecular weight alkanes and marine primary productivity, constituting long chain alkenones, both exhibited a high value in glacial and low value in interglacial, which suggests the supply of organic matter from the land is enhanced and the productivity in the ocean during glacial is increased.Alkane ratio of C31/C27 indicated that the predominant plants in South China changed from grass during glacial to tree during interglacial.All the results show the instability of climate since the last glacial in the SCS, and the significant role played by marine and terrestrial ecosystems in climate changes, as well as the potential of molecular organic geochemistry in paleoenvironment and paleoclimate studies.
-
Key words:
- biogeochemistry /
- molecular biomarker /
- South China Sea /
- paleoclimate
-
图 4 南海北部不同站位的表层水温记录对比(各站位位置见图 1)
Fig. 4. Comparisons of the SST record in northern South China Sea
图 5 17937岩心正构烷烃C31/C27变化曲线与1144站孢粉含量的对比(Sun et al., 2003)
Fig. 5. Comparison of the alkane ratio of C31/C27 in 17937 and pollen percent in 1144
-
[1] Calvo, E., Villanueva, J., Gri malt, J. O., et al., 2001. New insights into the glacial latitudinal temperature gradients in the North Atlantic: Results from U37k' sea surface temperatures and terrigenous inputs. Earth and Planetary Science Letters, 188(3-4): 509-519. doi: 10.1016/S0012-821X(01)00316-8 [2] CLI MAP Project Members, 1976. The surface of the ice-age Earth. Science, 191(4232): 1131-1137. doi: 10.1126/science.191.4232.1131 [3] Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments Ⅱ. Organic Geochemistry, 11(6): 513-527. doi: 10.1016/0146-6380(87)90007-6 [4] Hu, J. F., Peng, P. A., Fang, D. Y., et al., 2003a. No aridity in Sunda Land during the last glaciation: Evidence from the molecular-isotopic stratigraphy of long-chainn-alkanes. Palaeogeography, Palaeoclimatology, Palaeoecology, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8 [5] Hu, J. F., Peng, P. A., Jia, G. D., et al., 2003b. A biomarker and isotopic approach for the paleoenvironmental reconstruction Nansha area, South China Sea since the last 30 ka. Acta Sedi mentologica Sinica, 21(2): 211-218(in Chinese with English Abstract). [6] Hu, J. F., Peng, P. A., Jia, G. D., et al., 2002. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, South China Sea, during the last 30 ka. Organic Geochemistry, 33(10): 1197-1204. doi: 10.1016/S0146-6380(02)00082-7 [7] Huang, C. Y., Wu, S., Zhao, M., et al., 1997. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation. Marine Micropaleontology, 32(1-2): 71-94. doi: 10.1016/S0377-8398(97)00014-5 [8] Ikehara, M., Kawamura, K., Ohkouchi, N., et al., 2000. Variations of terrestrial input and marine productivity in the southern ocean (48°S) during the last two deglaciations. Paleoceanography, 15: 170-180. doi: 10.1029/1999PA000425 [9] Jia, G. D., Peng, P. A., Zhao, Q. H., et al., 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stableisotope evidence from black carbon in the South China Sea. Geology, 31(12): 1093-1096. doi: 10.1130/G19992.1 [10] Kienast, M., Hanebuth, T. J. J., Pelejero, C., et al., 2003. Synchroneity of meltwater pulse 1a and the boling warming: New evidence from the South China Sea. Geology, 31(1): 67-70. doi: 10.1130/0091-7613(2003)031<0067:SOMPAT>2.0.CO;2 [11] Kienast, M., Steinke, S., Stattegger, K., et al., 2001. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science, 291(5511): 2132-2134. doi: 10.1126/science.1057131 [12] Meyers, P. A., Ishi watari, R., 1993. Lacustrine organic geochemistry—An overviewof indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7): 867-900. doi: 10.1016/0146-6380(93)90100-P [13] Oppo, D. W., Sun, Y. B., 2005. Amplitude and timing of seasurface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon. Geology, 33(10): 785-788. doi: 10.1130/G21867.1 [14] Pelejero, C., 2003. Terrigenous n-alkane input in the South China Sea: High-resolution records and surface sediments. Chemical Geology, 200(1-2): 89-103. doi: 10.1016/S0009-2541(03)00164-5 [15] Pelejero, C., Gri malt, J. O., 1997. The correlation between the U37k' index and sea surface temperatures in the warm boundary: The South China Sea. Geochimicaet Cosmochimica Acta, 61(22): 4789-4797. doi: 10.1016/S0016-7037(97)00280-9 [16] Pelejero, C., Gri malt, J. O., Heilig, S., et al., 1999a. Highresolution U37k'-temperature reconstructions in the South China Sea over the last 220 kyrs. Paleoceanography, 14: 224-231. doi: 10.1029/1998PA900015 [17] Pelejero, C., Gri malt, J. O., Sarnthein, M., et al., 1999b. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140000 years. Marine Geology, 156(1-4): 109-121. doi: 10.1016/S0025-3227(98)00175-3 [18] Porter, S. C., An, Z. S., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375: 305-308. doi: 10.1038/375305a0 [19] Sun, X. J., Li, X., 1999. A pollen record of the last 37 ka in deep sea core 17940 from the northern slope of the South China Sea. Marine Geology, 156(1-4): 227-244. doi: 10.1016/S0025-3227(98)00181-9 [20] Sun, X. J., Li. X., Luo. Y. L., et al., 2000. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X [21] Sun, X. J., Luo, Y. L., 2001. A deep sea pollen record of the last 280 ka in northern South China Sea. Sciencein China(Ser. D), 31(10): 846-853(in Chinese). [22] Sun, X. J., Luo, Y. L., Huang, F., et al., 2003. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Marine Geology, 201(1-3): 97-118. doi: 10.1016/S0025-3227(03)00211-1 [23] Ternois, Y., Kawamura, K., Keigwin, L., et al., 2001. A biomarker approach for assessing marine and terrigenous inputs to the sediments of sea of Okhotsk for the last 27000 years. Geochimicaet Cosmochimica Acta, 65(5): 791-802. doi: 10.1016/S0016-7037(00)00598-6 [24] Tian, J., Wang, P. X., 2006. Tropical process and its periodicity in the deep sea records. Earth Science—Journal of China University of Geosciences, 31(6): 747-753(in Chinese with English abstract). [25] Wang, L., Sarnthein, M., Erlenkeuser, H., et al., 1999. East Asian monsoon cli mate during the Late Pleistocene: High-resolution sedi ment records fromthe South China Sea. Marine Geology, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0 [26] Wang, P. X., Zhao, Q. H., Jian, Z. M., et al., 2003. The deep sea record in South China Sea since 30 Ma. Chinese Science Bulletin, 48(21): 2206-2215(in Chinese). doi: 10.1360/csb2003-48-21-2206 [27] Wang, P. X., Tian, J., Cheng, X. R., et al., 2004. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 19: PA4005, doi: 10.1029/2003PA000991. [28] Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave. Science, 294(5550): 2345-2348. doi: 10.1126/science.1064618 [29] Wei, G., Liu, Y., Li, X., et al., 2003. Cli matic i mpact on Al, K, Sc and Ti in marine sedi ments: Evidence from ODP Site 1144, South China Sea. Geochemical Journal, 37: 593-602. doi: 10.2343/geochemj.37.593 [30] Wei, G. J., Deng, W. F., Liu, Y., et al., 2007. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 250(1-4): 126-138. doi: 10.1016/j.palaeo.2007.03.005 [31] Xie, S. C., Yi, Y., Liu, Y. Y., et al., 2003. The Pleistocene vermicular red earthin South China signaling the global climatic change: The molecular fossil record. Science in China(Ser. D), 46(11): 1113-1120. [32] Zhao, M. X., Mercer, J. L., Eglinton, G., et al., 2006a. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for thelast160kyr off Cap Blanc, NW Africa. Organic Geochemistry, 37(1): 72-97. doi: 10.1016/j.orggeochem.2005.08.022 [33] Zhao, M. X., Huang, C. Y., Wang, C. C., et al., 2006b. A milliennial-scale U37K' sea-surface temperature from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 236(1-2): 39-55. doi: 10.1016/j.palaeo.2005.11.033 [34] 胡建芳, 彭平安, 贾国东, 等, 2003. 三万年来南沙海区古环境重建: 生物标志物定量与单体碳同位素研究. 沉积学报, 21(2): 211-218. doi: 10.3969/j.issn.1000-0550.2003.02.004 [35] 孙湘君, 罗运利, 2001. 南海北部280ka以来深海花粉记录. 中国科学(D辑), 31(10): 846-853. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110007.htm [36] 田军, 汪品先, 2006. 深海记录中的热带过程及其周期性. 地球科学——中国地质大学学报, 31(6): 747-753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606001.htm [37] 汪品先, 赵泉鸿, 翦知湣, 等, 2003. 南海三千万年的深海记录. 科学通报, 48(21): 2206-2215. doi: 10.3321/j.issn:0023-074X.2003.21.003