Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area
-
摘要: 青藏高原具有典型的三分时空结构和3种尺度动力学体系.青藏高原由3个构造结调整的3个盆山体系组成, 北部、东部和南部3个盆山体系分别受控于古亚洲洋及西伯利亚、西太平洋和特提斯三大构造域, 经历了前寒武纪超大洋一超大陆耦合、加里东期-印支期-燕山期和喜马拉雅早期自北而南的洋陆耦合和板内盆山耦合三大构造发展过程, 形成于地核流层驱动的地核(或全球) 动力学过程、地幔流层驱动的地幔(或岩石圈) 动力学过程和地壳流层驱动的地壳(或大陆) 动力学过程, 构成历史地球系统动力学系统.青藏高原不是印度板块与欧亚板块碰撞的结果, 而是形成于下地壳流动驱动的板内盆山作用, 可分为以中、新生代有序向南迁移式构造隆升、水平运动、地质作用和成矿作用为特征的板内造山阶段和以脉动式快速隆升、垂直运动、地理作用和环境变化为特征的均衡成山阶段.构造谱系决定了成矿谱系, 区域构造叠加演化造成地壳成熟度的不断增加和矿床密集度的不断提高.青藏高原3个构造成矿演化阶段包括1.8~1.4Ga、500~420Ma、300~260Ma、180~120Ma、65~30Ma、23~7Ma等6个主金属成矿期, 1.8~1.4Ga超大陆裂解事件形成与深地幔火山岩浆作用有关的大红山式海相火山喷流沉积改造型铁铜矿、金川式与镁铁-超镁铁质岩有关的铜镍硫化物浆矿床, 500~420Ma、300~260Ma和180~120Ma特提斯裂解环境下形成罗布莎式地幔剪切-改造脉型(豆荚状) 铬铁矿床、呷村式海相火山成因块状硫化物矿床等, 180~120Ma、65~30Ma和23~7Ma是青藏高原自北而南板内伸展环境下大规模成矿期, 形成驱龙式斑岩铜矿床、哀牢山式剪切带型金矿床、金顶式陆相盆地沉积型铅锌矿床, 构成一个完整的地球系统成矿动力学演化体系.Abstract: The Qinghai-Tibet plateau has trichotomy of temporal-spatial structure and three scales of dynamic system.The plateau includes northern, eastern and southern basin-mountain systems adjusted by three (northern, eastern and western) syntaxes that are separately controlled by Siberia plate, Pacific plate and India ocean plate, which underwent three tectonic stages including Precambrian supercontinent-superocean coupling, southward ocean-continent coupling of Proto-Tethys, Pa-leo-Tethys, Meso-Tethys, and Neo-Tethys that separately took place in the Caleodonian period, Indosinian period, Yans-hanian period and Early Himalayan period and intraplate basin-mountain coupling separately driven by laminar flow in core (core dynamics or global dynamics), laminar layer in mantle (mantle dynamics or lithospheric dynamics) and laminar flow in crust (crustal dynamics or dynamic dynamics), composing an earth system dynamics system.The Qinghai-Tibetan plateau is not the result of collision between the Indian plate and the Eurasia plate, but intraplate basin-mountain coupling driven by lower crust lateral flow from basin to plateau, which can be subdivided into two stages: intraplate orogeny characteristized by tectonic uplift, horizontal movement, geological process and metallogenesis during 180-7 Ma southward migration from Qilian-Kunlun to Himalaya and isostatic mountain building characteristized by pulsative integral quick uplift, vertical move-ment, geographical process and environmental change since 3.6 Ma.Tectonic pedigree determines mineralizing pedigree.Multistage regional tectonic evolution causes the increase of crustal maturity and enhancement of mineral deposit density.Three stages of tectonic and metallogenic evolution in the Qinghai-Tibet plateau include six main mineralizing phases inclu ding 1, 8-1.4 Ga, 500-420 Ma, 300-260 Ma, 180-120 Ma.65-30 Ma, and 23-7 Ma, constituting a metallogenic dy namics evolutional system, in which 1.8-1.4 Ga rifting event of supercontinent resulted in formation for Dahongshan-type reworked marine volcanic sedimentary iron-copper deposit, Jinchuan-type copper and nickel sulfide deposits associated with mafic and ultramafic rocks; 500-420 Ma rifting of Proto-Tethys, 300-260 Ma rifting of Paleo-Tethys, and 180-120 Ma rifting of Meso-Tethys and Neo-Tethys controlled Luobusha-type mantle shear and reworking vein (podiform) chromite de posits, Gacun-type volcanics-hosted massive sulfide (VHMS) deposits; 180-120Ma intraplate extension in the northern plateau, 65-30 Ma intraplate extension in the central plateau and 23-7 Ma intraplate extension in the southern plateau formed the Qulong-type porphyry Cu deposits, Ailaoshan-type shear zone Au deposits, and Jinding-type continental sedi mentary rock-hosted Pb-Zn deposits.
-
表 1 藏高原三阶段构造演化基本特征的对比
Table 1. Comparison of three-stage tectonic evolution features in the Qinghai-Tibet plateau
表 2 青藏高原板内两阶段构造演化地质特征的对比
Table 2. Comparison of two-stage intraplate tectonic evolution in the Qinghai-Tibet plateau
-
[1] Barley, M. E., Groves, D. I., 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology, 20 (4): 291-294. doi: 10.1130/0091-7613(1992)020<0291:SCATDO>2.3.CO;2 [2] Bi, X. W., Hu, R. Z., He, M. Y., 1996. Age determination of Ailaoshan gold metallogenic belt by ESR method and its geological significance. Chinese Science Bulletin, 41 (18): 1546-1549. [3] Cao, S. H., Li, D. W., Yu, Z. Z., et al., 2007. Metallogenic and geological characteristics of the Nixiong superlarge magnetite deposit in the Gangdese, Tibet. Geotectonica et Metallogenia, 31 (3): 328-334 (in Chinese with English abstract). [4] Cao, S. H., Luo, X. C., Tang, F. L., et al., 2004. Ti me-space structure and evolution of the arc-basin system on the southern side of the Bangong Co-Nujiang junction zone. Geologyin China, 31 (1): 51-56 (in Chinese with English abstract). [5] Chen, K. X., Lu, Y. F., Wei, J. Q., et al., 2002. Geological background and polychronic mineralization of Yangla copper deposit, in Deqing, north-western Yunnan. Mineral deposits, 21 (Suppl. ): 361-364 (in Chinese with English abstract). [6] Chen, Y. C., Pei, R. F., Song, T. R., et al., 1998. Preliminary discussion on deposit metallogenic series in China. Geological Publishing House, Beijing, 1-104 (in Chinese). [7] Chen, Y. L, Zhang, K. Z., Li, G Q, et al., 2005. Discovery of an uniformity between the Upper Triassic Quehala Group and its underlying rock series in the central segment of the Bangong Co-Nujiang junction zone, Tibet, Chinn. Geological Bulletin of China, 24(7): 621—624 (in Chinese with English abstract). [8] Ding, L., Zhong, D. L., Yin, A., et al., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192: 423-438. doi: 10.1016/S0012-821X(01)00463-0 [9] Duo, J., 2003. The basic characteristics of the Yangbajing geothermal field—A typical high temperature geothermal system. Engineering Science, 5 (1): 42-47 (in Chinese with English abstract). [10] Duo, J., Wen, C. Q., Guo, J. C., et al., 2007. Discovery of 4.1 Ga detrital zircon in Tibet. Chinese Science Bulletin, 52 (1): 19-22 (in Chinese). doi: 10.1360/csb2007-52-1-19 [11] England, P. C., Molnar, P., 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344: 109-110. doi: 10.1038/344109a0 [12] Feng, C. Y., Zhang, D. Q., Li, D. X., et al., 2002. Geological characteristics and ore-forming age of Saibagou gold deposit, Qinghai Province. Mineral Deposit, 21 (1): 45-52 (in Chinese with English abstract). [13] Fu, Z. R., Li, D. W., Li, X. F., et al., 1992. Analysis of metamorphic core complex, decollement fault and their control on ore mineralization. China University of Geosciences Press, Wuhan, 1-110 (in Chinese). [14] Groves, D. I., Bierlein, F. P., 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164 (1): 19-30. doi: 10.1144/0016-76492006-065 [15] Guo, J. C., Duo, J., Wen, C. Q., et al., 2006. Mineralization background and stages of the Mayum gold deposit, Xizang. Sedi mentary Geology and Tethyan Geology, 26 (1): 60-66 (in Chinese with English abstract). [16] Guo, J. J., Zhao, F. Q., Li, H. K., et al., 2000. New chronological evidence of the age of Huangyuan Group in the eastern segment of Mid-Qilian massif and its geological significance. Regional Geology of China, 19 (1): 26-31 (in Chinese with English abstract). [17] Guo, T. Y., Liang, D. Y., Zhang, Y. Z., et al., 1991. Geology of Ngari, Tibet (Xizang). China University of Geosciences Press, Wuhan, 103-104 (in Chinese with English abstract). [18] Hou, Z. Q., Lu, Q. T., Wang, A. J., et al., 2003. Continental collision and related metallogeny: A case study of mineralization in Tibetan orogen. Mineral Deposit, 22 (4): 319-333 (in Chinese with English abstract). [19] Huang, J. Q., Chen, B. W., 1987. The evolution of the Tethys in China and adjacent regions. Geological Publishing House, Beijing, 1-109 (in Chinese). [20] Jiang, Y. S., 1996. Types and genesis of melangein Gargê area in the Garzê-Litang junction. Acta Geologica Sichuan, 16 (3): 199-203 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412015.htm [21] Li, C., Zhai, Q. G., Dong, Y. S., et al., 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Science Bulletin, 51 (9): 1095-1100. doi: 10.1007/s11434-006-1095-3 [22] Li, D. W., 1993. Metallogenic dynamics. Earth Science—Journal of China University of Geosciences, 18 (4): 407-413 (in Chinese with English abstract). [23] Li, D. W., 1994a. Metallogenic conditions and prospect analysis in southern Tibet. Journal of Guilin College of Geology, 14 (2): 131-138 (in Chinese with English abstract). [24] Li, D. W., 1994b. Discovery of mantle ductile shear zone in ophiolite along Yarlungzangbo River, Tibet and its significance. Earth Science—Journal of China University of Geosciences, 19 (4): 455-460 (in Chinese with English abstract). [25] Li, D. W., 1994c. The outline of evolution for the Qinghai-Tibet Tethyan domain since Late Palaeozoic. In: Wan, T. F., ed., Annual report of lithosphere tectonic and dynamics openning laboratory. Seismolgical Press, Beijing, 163-169. [26] Li, D. W., 1995. On continental tectonics and its dynamics. Earth Science—Journal of China University of Geoscience, 20 (1): 19-26 (in Chinese with English abstract). [27] Li, D. W., 1997. Phlosophical exploration of continental dynamics. Exploration of Nature, 16 (2): 107-110 (in Chinese with English abstract). [28] Li, D. W., 2003. A new model for uplifting mechanism of Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 28 (6): 593-600 (in Chinese with English abstract). [29] Li, D. W., 2004. Late Cenozoic intraplate orogeny and dynamic metallogenyin the southern Qinghai-Tibet plateau. Earth Science Frontiers, 11 (4): 361-369 (in Chinese with English abstract). [30] Li, D. W., 2005a. Out line of earth system dynamics. Geotectonica et Metallogenia, 29 (3): 285-294 (in Chinese with English abstract). [31] Li, D. W., 2005b. Theoretical prediction and scientific exploration: The Gangdese porphyry copper deposits in Tibet as an example. Geological Science and Technology Information, 24 (3): 48-54 (in Chinese with English abstract). [32] Li, D. W., Temporal-spatial structure of intraplate uplift in the Qinghai-Tibet plateau. Acta Geologica Sinica-Engl, (in press). [33] Li, D. W., Li, X. F., 1993. Investigation and practice of fourdimensional dynamic metallogenic theory—An example from Luobusha chromite deposits in Tibet. China University of Geosciences Press, Wuhan, 1-88 (in Chinese). [34] Li, D. W., Liao, Q. A., Yuan, Y. M., et al., 2003. SHRIMP U-Pb zircon geochronology of granulites at Rimana (southern Tibet) in the central segment of Himalayanorogen. Chinese Science Bulletin, 48 (23): 2647-2650. doi: 10.1360/03wd0080 [35] Li, D. W., Yin, A., 2008. Orogen-parallel, active left-slipfaults in the eastern Himalaya: Implications for the growth mechanism of the Himalayan arc. Earth and Planetary Science Letters, 274: 258-267. doi: 10.1016/j.epsl.2008.07.043 [36] Li, D. W., Zhang, X. H., Liao, Q. A., et al., 2004. New results and main progress in geological survey of the Dingjie County and Chentang District sheets. Geological Bulletin of China, 23 (5-6): 438-443 (in Chinese with English abstract). [37] Li, D. W., Zhao, W. X., Zhang, T. P., et al., 1998. Structural setting of multi-scale geological anomaly in central Yunnan Province. Earth Science—Journal of China University of Geosciences, 23 (2): 137-140 (in Chinese with English abstract). [38] Li, D. W., Zhuang, Y. X., 2006. Scientific problems of continental dynamics in the Qinghai-Tibet plateau. Geological Science and Technology Information, 25 (2): 1-10 (in Chinese with English abstract). [39] Li, X. H., Wang, C. S., Hu, X. M., 2001. Latest non-car-bonate marine sedi ment in Tibet: Significance to closure of the Neo-Tethys Sea. Acta Geologica Sinica, 75 (3): 314-321 (in Chinese with English abstract). [40] Lu, S. N., 2002. Preli minary study of precambrian geology in the north Tibet-Qinghai plateau. Geological Publishing House, Beijing, 1-125 (in Chinese). [41] Ma, H. D., Yang, Z. J., Wei, X. C., 2004. New results and major progress in regional geological survey of the Muztag and Jingyu Lake sheets. Geological Bulletin of China, 23 (5-6): 570-578. [42] Ma, H. W., 1990. Petrology and mineralization of granites in Yuhong porphyry copper belt, Tibet. China University of Geosciences Press, Wuhan, 1-158 (in Chinese). [43] Mao, J. W., Xie, G. Q., Zhang, Z. H., et al., 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21 (1): 169-188 (in Chinese with English abstract). [44] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of volcanismto the India-Asia collision. Earth Science Frontiers, 10 (3): 135-148 (in Chinese with English abstract). [45] Pan, G. T., Chen, Z. L., Li, X. Z., et al., 1997. Geologicaltectonic evolution in the eastern Tethys. Geological Publishing House, Beijing, 1-218 (in Chinese). [46] Pan, Y. S., 1994. Discovery and evidence of the fifth suture zone of Qinghai-Xizang plateau. Acta Geophysica Sinica, 37 (2): 184-192 (in Chinese with English abstract). [47] Qiu, H. N., 1996. 40Ar-39Ar dating of the quartz samples from two mineral deposits in western Yunnan (SW China) by crushing in vacuum. Chemical Geology, 127 (1-3): 211-222. doi: 10.1016/0009-2541(95)00093-3 [48] Qiu, R. Z., Deng, J. F., Zhou, S., et al., 2005. Ophiolite types in western Qinghai-Tibetan plateau—Evidences from petrology and geochemistry. Earth Science Frontiers, 12 (2): 277-291 (in Chinese with English abstract). [49] Qu, X. M., Xin, H. B., 2006. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China. Geological Bulletin of China, 25 (7): 792-799 (in Chinese with English abstract). [50] Rui, Z. Y., Hou, Z. Q., Li, G. M., et al., 2006. A genetic model for the Gandise porphyry copper deposits. Geological Review, 52 (4): 459-466 (in Chinese with English abstract). [51] Sawkins, F. J., 1990. Metal deposits in relation to plate tectonics. Second edition. Springer-Verlag, Berlin, 1-461. [52] Sengor, A. M. C., 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279 (5714): 590-593. doi: 10.1038/279590a0 [53] Tang, Z. L., Bai, Y. L., 1999. Geotectonic framework and metallogenic systemin the southwest margin of North China paleocontinent. Earth Science Frontiers, 6 (2): 271-284 (in Chinese with English abstract). [54] Tonarini, S., Villa, I. M., Oberli, F., et al., 1993. Eocene age of eclogite metamorphismin Pakistan Hi malaya: Implications for India-Eurasia collision. Terra Nova, 5: 13-20. doi: 10.1111/j.1365-3121.1993.tb00221.x [55] Wang, D. H., Qu, W. J., Li, Z. W., et al., 2005. Mineralization episode of porphyry copper deposits in the Jinshajiang-Red River mineralization belt: Re-Os dating. Science in China (Ser. D), 48 (2): 192-198. [56] Wang, G. C., Wang, Q. H., Jian, P., et al., 2004. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11 (4): 481-490 (in Chinese with English abstract). [57] Wang, R., Xia, B., Zhou, G. Q., et al., 2006. SHRI MP zircon U-Pb dating for gabbro from the Jiding ophiolite in Tibet. Chinese Science Bulletin, 51 (14): 1776-1779. doi: 10.1007/s11434-006-2027-y [58] Wang, Y. S., 1996. Types and genesis of melange in Garge Area in the Garze-Litang junction. Acta Geologica Sichuan, 16 (3): 199-203 (in Chinese with English abstract). [59] Wei, Q. R., Li, D. W., Wang, G. C., 2007. Geochemical characteristics and tectonic setting of volcanic rocks from the Wanbaogou Group in east Kunlun orogenic belt. J. Mineral. Petrol. , 27 (1): 97-106 (in Chinese withEnglish abstract). [60] Wu, Z. H., Meng, X. G., Hu, D. G., et al., 2004. New results and majior progressinregional geological survey of the Damxung County Sheet. Geological Bulletin of China, 23 (5-6): 484-491 (in Chinese with English abstract). [61] Xiao, W. J., Windley, B. F., Liu, D. Y., et al., 2005. Accretionary tectonics of the western Kunlun orogen, China: A Paleozoic-Early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia. Journal of Geology, 113 (6): 687-705. doi: 10.1086/449326 [62] Xiao, X. C., Li, T. D., 1995. Tectonic evolution and uplift of the Qinghai-Tibet plateau. Episodes, 18 (1-2): 31-35. doi: 10.18814/epiiugs/1995/v18i1.2/007 [63] Xiao, X. C., Li, T. D., 2000. Tectonic evolution and uplift mechanism of the Qinghai-Tibet plateau. Guangdong Scientific and Technological Press, Guangzhou, 1-313 (in Chinese). [64] Xiu, Q. Y., Yu, H. F., Li, Q., et al., 2004. Discussion on the petrogenic time of Longshoushan Group, Gansu Province. Acta Geologica Sinica, 78 (3): 366-373 (in Chinese with English abstract). [65] Xu, Z. Q., Yang, J. S., Liang, F. H., et al., 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21 (1): 1-12. [66] Yang, J. S., Zhang, J. X., Meng, F. C., et al., 2003. Ultrahigh pressure eclogites of the North Qaidamand Altun Mountains, NW China and their protoltths. Earth Science Frontiers, 10 (3): 291-314 (in Chinese with English abstract). [67] Yin, A., Harrison, T. M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Reviews of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [68] Yu, H. F., Lu, S. N., Mei, H. L., et al., 1999. Characteristics of Neoproterozoic eclogite-granite zones and deep level ductile shear zone in western China and their significance for continental reconstruction. Acta Petrologica Sinica, 15 (4): 532-538 (in Chinese with English abstract). [69] Zhai, Y. S., Deng, J. F., 1996. Outline of the mineral resources of China and their tectonic setting. Australian Journal of Earth Sciences, 43: 673-685. doi: 10.1080/08120099608728286 [70] Zhang, C. L., Yang, C., Shen, J. L., et al., 2003. Zircon SHRIMP age of Neoproterozoic gneissoid granites in the west Kunlun and its significance. Geological Review, 19 (3): 239-244 (in Chinese with English abstract). [71] Zhang, G. W., Cheng, S. Y., Guo, A. L., et al., 2004. Mianlue paleo-suture on the southern margin of the central orogenic systemin Qinling-Dabie—With a discussion of the assembly of the main part of the continent of China. Geological Bulletin of China, 23 (9-10): 846-853 (in Chinese with English abstract). [72] Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 1999. The ages of U-Pb and Sm-Nd for eclogite from the western segment of Altyn Tagh tectonic belt—Evidence for existence of Caledonian orogenic root. Chinese Science Bulletin, 44 (24): 2256-2259. doi: 10.1007/BF02885933 [73] Zhang, Q., Sun, X. M., Zhou, D. J., et al., 1997. The characteristics of North Qilian ophiolites, forming settings and their tectonic significance. Advance in Earth Sciences, 12 (4): 366-393 (in Chinese with English abstract). [74] Zhang, X. T., Wang, B. Z., Yu, J., et al., 2005. Sedimentary characteristics of the Bayan Har remnant ocean basin, northwestern China. Geological Bulletin of China, 24 (7): 613-620 (in Chinese with English abstract). [75] Zhang, Z. C., Zhou, M. F., Paul, T. R., et al., 2001. SHRIMP dating of the Aoyougou ophiolite in the west sector of the north Qilian Mountains and its geological significance. Acta Petrologica Sinica, 17 (2): 222-226 (in Chinese with English abstract). [76] Zheng, M. P., Xiang, J., Wei, X. J., et al., 1989. Saline lakes on the Qinghai-Xizang (Tibet) plateau. Beijing Scientific and Technological Publishing House, Beijing, 1-431 (in Chinese). [77] Zheng, M. P., Wang, Q. X., Duo, J., et al., 1995. A new type of hydrothermal deposit: Cs sinter deposits. Geological Publishing House, Beijing, 1-114 (in Chinese). [78] Zheng, Y. Y., Duo, J., Ma, G. T., et al., 2007. Mineralization characteristics, discovery and age restriction of Chalapu hardrock gold deposit, southern Tibet. Earth Science—Journal of China University of Geosciences, 32 (2): 185-193 (in Chinese with English abstract). [79] Zhong, L. F., Xia, B., Zhou, G. Q., et al., 2006. SHRIMP age determination of the diabase in Luobusa ophiolite, southern Xizang (Tibet). Geological Review, 52 (2): 224-229 (in Chinese with English abstract). [80] Zhou, S., Mo, X. X., Mahoney, J. J., et al., 2002. Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusha ophiolite, Tibet. Chinese Science Bullitin, 47 (2): 143-145. [81] 曹圣华, 罗小川, 唐峰林, 等, 2004. 班公湖-怒江结合带南侧弧-盆系时空结构与演化特征. 中国地质, 31 (1): 51-56. doi: 10.3969/j.issn.1000-3657.2004.01.007 [82] 曹圣华, 李德威, 余忠珍, 等, 2007. 西藏冈底斯尼雄超大型富铁矿的成矿地质特征. 大地构造与成矿学, 31 (3): 328-334. doi: 10.3969/j.issn.1001-1552.2007.03.009 [83] 陈开旭, 路远发, 魏君奇, 等, 2002. 滇西北羊拉铜矿区地质背景及多期成矿作用. 矿床地质, 21 (增刊): 361-364. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1100.htm [84] 陈毓川, 裴荣富, 宋天锐, 等, 1998. 中国矿床成矿系列初论. 北京: 地质出版社, 1-104. [85] 陈玉禄, 张宽忠, 李关清, 等, 2005. 班公湖-怒江结合带中段上三叠统确哈拉群与下伏岩系呈角度不整合关系的发现及意义. 地质通报, 24 (7): 621-624. doi: 10.3969/j.issn.1671-2552.2005.07.005 [86] 多吉, 2003. 典型高温地热系统——羊八井热田基本特征. 中国工程科学, 5 (1): 42-47. doi: 10.3969/j.issn.1009-1742.2003.01.008 [87] 多吉, 温春齐, 郭建慈, 等, 2007. 西藏4.1Ga碎屑锆石年龄的发现. 科学通报, 52 (1): 19-22. doi: 10.3321/j.issn:0023-074X.2007.01.003 [88] 丰成友, 张德全, 李大新, 等, 2002. 青海赛坝沟金矿地质特征及成矿时代. 矿床地质, 21 (1): 45-52. doi: 10.3969/j.issn.0258-7106.2002.01.006 [89] 傅昭仁, 李德威, 李先福, 等, 1992. 变质核杂岩及剥离断层的控矿构造解析. 武汉: 中国地质大学出版社, 1-110. [90] 郭建慈, 多吉, 温春齐, 等, 2006. 西藏马攸木金矿成矿背景与成矿阶段. 沉积与特提斯地质, 26 (1): 60-66. doi: 10.3969/j.issn.1009-3850.2006.01.010 [91] 郭进京, 赵凤清, 李怀坤, 等, 2000. 中祁连东段湟源群的年代学新证据及其地质意义. 中国区域地质, 19 (1): 26-31. doi: 10.3969/j.issn.1671-2552.2000.01.005 [92] 郭铁鹰, 粱定益, 张宜智, 等, 1991. 西藏阿里地质. 武汉: 中国地质大学出版社, 103-104. [93] 侯增谦, 吕庆田, 王安建, 等, 2003. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例. 矿床地质, 22 (4): 319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001 [94] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社, 1-74. [95] 江元生, 1996. 甘孜-理塘结合带甘孜地区混杂岩类型及成因分析. 四川地质学报, 16 (3): 199-203. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB603.001.htm [96] 李德威, 1993. 成矿动力学刍议. 地球科学——中国地质大学学报, 18 (4): 407-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199304004.htm [97] 李德威, 1994a. 藏南成矿条件及找矿远景分析. 桂林治金地质学院学报, 14 (2): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX402.003.htm [98] 李德威, 1994b. 雅鲁藏布江蛇绿岩中幔型韧性剪切带的发现及其意义. 地球科学——中国地质大学学报, 19 (4): 455-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199404009.htm [99] 李德威, 1995. 再论大陆构造与动力学. 地球科学——中国地质大学学报, 20 (1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX501.002.htm [100] 李德威, 1997. 大陆动力学的哲学探索. 大自然探索, 16 (2): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT702.026.htm [101] 李德威, 2003. 青藏高原隆升机制新模式. 地球科学——中国地质大学学报, 28 (6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306002.htm [102] 李德威, 2004. 青藏高原南部晚新生代板内造山与动力成矿. 地学前缘, 11 (4): 361-369. doi: 10.3321/j.issn:1005-2321.2004.04.003 [103] 李德威, 2005a. 地球系统动力学纲要. 大地构造与成矿学, 29 (3): 285-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200503001.htm [104] 李德威, 2005b. 理论预测与科学找矿——以西藏冈底斯斑岩铜矿为例. 地质科技情报, 24 (3): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200503011.htm [105] 李德威, 李先福, 1993. 四维动态成矿理论的探索与实践——以西藏罗布莎铬铁矿区为例. 武汉: 中国地质大学出版社, 1-88. [106] 李德威, 张雄华, 廖群安, 等, 2004. 定结县幅、陈塘区幅地质调查新成果及主要进展. 地质通报, 23 (5-6): 438-443. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1005.htm [107] 李德威, 赵温霞, 张天平, 等, 1998. 滇中多尺度地质异常的构造背景场. 地球科学——中国地质大学学报, 23 (2): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX802.006.htm [108] 李德威, 庄育勋, 2006. 青藏高原大陆动力学的科学问题. 地质科技情报, 25 (2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200602000.htm [109] 李祥辉, 王成善, 胡修棉, 2001. 西藏最新非碳酸盐海相沉积及其对新特提斯关闭的意义. 地质学报, 75 (3): 314-321. doi: 10.3321/j.issn:0001-5717.2001.03.004 [110] 陆松年, 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社, 1-125. [111] 马华东, 杨子江, 魏新昌, 等, 2004. 木孜塔格幅、鲸鱼湖幅地质调查新成果及主要进展. 地质通报, 23 (5-6): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1029.htm [112] 马鸿文, 1990. 西藏玉龙斑岩铜矿带花岗岩类与成矿. 武汉: 中国地质大学出版社, 1-158. [113] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次和相应的地球动力学背景. 岩石学报, 21 (1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [114] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程与火山作用响应. 地学前缘, 10 (3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [115] 潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 1-218. [116] 潘裕生, 1994. 青藏高原第五缝合带的发现与论证. 地球物理学报, 37 (2): 184-192. doi: 10.3321/j.issn:0001-5733.1994.02.006 [117] 邱瑞照, 邓晋福, 周肃, 等, 2005. 青藏高原西部蛇绿岩类型: 岩石学与地球化学证据. 地学前缘, 12 (2): 277-291. doi: 10.3321/j.issn:1005-2321.2005.02.029 [118] 曲晓明, 辛洪波, 2006. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境. 地质通报, 25 (7): 792-799. doi: 10.3969/j.issn.1671-2552.2006.07.004 [119] 芮宗瑶, 侯增谦, 李光明, 等, 2006. 冈底斯斑岩铜矿成矿模式. 地质论评, 52 (4): 459-466. doi: 10.3321/j.issn:0371-5736.2006.04.004 [120] 汤中立, 白云来, 1999. 华北古大陆西南边缘构造格架与成矿系统. 地学前缘, 6 (2): 271-284. doi: 10.3321/j.issn:1005-2321.1999.02.006 [121] 王国灿, 王青海, 简平, 等, 2004. 东昆仑前寒武纪基底变质岩系的锆石SHRI MP年龄及其构造意义. 地学前缘, 11 (4): 481-490. doi: 10.3321/j.issn:1005-2321.2004.04.014 [122] 王冉, 夏斌, 周国庆, 等, 2006. 西藏吉定蛇绿岩中辉长岩SHRI MP锆石U-Pb年龄. 科学通报, 51 (1): 114-117. doi: 10.3321/j.issn:0023-074X.2006.01.021 [123] 魏启荣, 李德威, 王国灿, 2007. 东昆仑万保沟群火山岩(Pt2w) 岩石地球化学特征及其构造背景. 矿物岩石, 27 (1): 97-106. doi: 10.3969/j.issn.1001-6872.2007.01.016 [124] 吴珍汉, 孟宪刚, 胡道功, 等, 2004. 当雄县幅地质调查新成果及主要进展. 地质通报, 23 (5-6): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1014.htm [125] 肖序常, 李廷栋, 2000. 青藏高原的构造演化与隆升机制. 广州: 广东科技出版社, 1-313. [126] 修群业, 于海峰, 李铨, 等, 2004. 龙首山岩群成岩时代探讨. 地质学报, 78 (3): 366-373. doi: 10.3321/j.issn:0001-5717.2004.03.010 [127] 许志琴, 杨经绥, 梁凤华, 等, 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21 (1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501001.htm [128] 杨经绥, 张建新, 孟繁聪, 等, 2003. 中国西部柴北缘—阿尔金的超高压变质榴辉岩及其原岩性质探讨. 地学前缘, 10 (3): 291-314. doi: 10.3321/j.issn:1005-2321.2003.03.026 [129] 于海峰, 陆松年, 梅华林, 等, 1999. 中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义. 岩石学报, 15 (4): 532-538. doi: 10.3321/j.issn:1000-0569.1999.04.005 [130] 张传林, 杨淳, 沈加林, 等, 2003. 西昆仑北缘新元古代片麻状花岗岩锆石SHRI MP年龄及其意义. 地质论评, 19 (3): 239-244. doi: 10.3321/j.issn:0371-5736.2003.03.003 [131] 张国伟, 程顺有, 郭安林, 等, 2004. 秦岭-大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合. 地质通报, 23 (9-10): 846-853. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2004.htm [132] 张旗, 孙晓猛, 周德进, 等, 1997. 北祁连蛇绿岩特征、形成环境及其构造意义. 地球科学进展, 12 (4): 366-393. doi: 10.3321/j.issn:1001-8166.1997.04.007 [133] 张雪亭, 王秉璋, 俞建, 等, 2005. 巴颜喀拉残留洋盆的沉积特征. 地质通报, 24 (7): 613-620. doi: 10.3969/j.issn.1671-2552.2005.07.004 [134] 张招崇, 周美付, Paul, T. R., 等, 2001. 北祁连山西段熬油沟蛇绿岩SHRI MP分析结果及其地质意义. 岩石学报, 17 (2): 222-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102005.htm [135] 郑绵平, 向军, 魏新俊, 等, 1989. 青藏高原盐湖. 北京: 北京科学技术出版社, 1-431. [136] 郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社, 1-110. [137] 郑有业, 多吉, 马国桃, 等, 2007. 藏南查拉普岩金矿床特征、发现及时代约束. 地球科学——中国地质大学学报, 32 (2): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702004.htm [138] 钟立峰, 夏斌, 周国庆, 等, 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRI MP测年. 地质论评, 52 (2): 224-229. doi: 10.3321/j.issn:0371-5736.2006.02.012
计量
- 文章访问数: 3567
- HTML全文浏览量: 88
- PDF下载量: 85
- 被引次数: 0