Stochastic Numerical Modeling of Groundwater in a Phreatic Aquifer with Perturbation Finite Element Method
-
摘要: 潜水水流的动态随机模拟是一个复杂而难解决的问题.通过建立二维潜水非稳定流模拟的摄动随机有限元模型, 把控制方程的主要参数渗透系数和给水度随机变量、及源汇项和边界条件看作随机变量.在充分考虑4种随机因素的条件下, 推导出求解潜水二维非稳定流均值和方差的9个方程; 重点介绍了不同方程数值离散的特殊处理方法.通过设定理想例子对模拟结果进行了分析, 表明随机变量中边界条件值方差、渗透系数方差变化对水头方差变化的影响很小, 给水度方差的变化对水头方差的变化影响很大.本模型考虑因素全面, 对一般的潜水非稳定流随机模拟都可应用.本研究给出了边界、渗透系数、给水度的随机因素对潜水动态模拟的影响, 丰富和补充了地下水运动的随机理论.Abstract: Dynamically stochastic simulation of flow in a phreatic aquifer is a complicated and challenging issue. A perturbation finite element model for transient two-dimensional flow in a phreatic aquifer is developed and presented in this paper. In the model, stochastic variables include hydraulic conductivity and specific yield in governing equation, as well as source/sink and boundary conditions, 9 equations are derived in order to solve expectation and variance of two-dimensional unsteady flow and specific numeric treatment is adopted for different equation discreteness. In the end, simulated results are analyzed by a hypothetical example, and it shows that the influence of variation of boundary condition variance and hydraulic conductivity variance is little and that of variation of specific yield variance is significant. This model can be applied to general stochastic simulation of unsteady flow in a phreatic aquifer due to the fact that it takes into account all relevant factors. The study presents the influence on dynamic simulation of flow in phreatic water by stochastic variables of boundary condition, hydraulic conductivity and specific yield and it offers an alternative theory of stochastic simulation of ground water flow.
-
表 1 随机参数最初设定值
Table 1. Initial value of stochastic parameters
表 2 位时均值数值解与解析解对比
Table 2. comparison of numerical and analytical solutions of mean value of groundwater level
表 3 透系数方差变化
Table 3. Variance variation of permeability coefficient
表 4 随机变量方差变化时水头方差的变化
Table 4. Variance variations of water head tO variance variation of stochastic variables
-
[1] Chen, C. X., Wan, J. W., 2002. Model of ground water flow in horizontal well and its numerical solutions. Earth Science-Journal of China University of Geosciences, 27(2): 135-140(in Chinese with English abstract). [2] Christiana, A G, Kamyirar, H, 2003. Stochastic modeling of transient contamination transport. Journal of Hydrology, 276: 224-239. doi: 10.1016/S0022-1694(03)00059-3 [3] Ferrante, M. T., Yeh, C. J., 1999. Head and flux variability in heterogeneous unsaturated soils under transient flow conditions. Water Resources Research, 35(4): 1471-1479. [4] Harald, O., Hans, L. P., 1998. An efficient probabilistie finite element method for stochastic groundwater flow. Advance in Water Research, 22(2): 185-195. doi: 10.1016/S0309-1708(97)00044-4 [5] Li, B. T., Yeh, C. J., 1998. Sensitivity and moment analyses of head in variably saturated regimes. Advance in Water Resources, 21(6): 477-485. doi: 10.1016/S0309-1708(97)00011-0 [6] Li, S. G., Laughin, D. M., IAao, H. S., 2003. A computation-ally practical method for stochastic groundwater modeling. Advance in WaterResources, 26: 1137-1148. [7] Mu, S., Wu, G. Q., Yin, Z. H., 2001. Kalman filtration technology correcting groundwater flow system-Applying in Daqing region with stochastically-deterministically numerical model. HeilongJiang Science and Technology of Water Conservancy, 2: 28-299(in Chinese). [8] Pan, H. Y., Wang, G. C, 1999. A research of applying of stochastic model in groundwater resources calculation. World Geology, 18(4): 58-63(in Chinese with English abstract). [9] Sheng, J. C, Su, B Y., Wei, B. Y., 2001. Stochastic seepage analysis of jointed rock masses by usage of Taylor series stochastic finite element method. Chinese Journal of Geotechnical Engineering, 23(4): 485-488(in Chinese with English abstract). [10] Yang, J. Z, Cai, S Y., 2000. Stochastic theory of moisture and solute transport in porous media. Science Press, Beijing(in Chinese). [11] Yao, U H., 1999. Perturbation coeffident awaiting determination stochastic finite element method for groundwater flow models. Journal of Hydraulic Engineering, (7): 60-63(in Chinese with English abstract). [12] 陈崇希, 万军伟, 2002. 地下水水平井流的模型及数值模拟方法. 地球科学-中国地质大学学报, 27(2): 135-140. doi: 10.3321/j.issn:1000-2383.2002.02.002 [13] 慕山, 吴国权, 尹兆和, 2001. Kalman滤波技术校正地下水流系统确定-随机性数值模型在大庆地区的应用. 黑龙江水利科技, 2: 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ200102019.htm [14] 潘宏雨, 王国成, 1999. 随机模型在地下水资源计算中的应用-随机水文地质计算理论与方法. 世界地质, 18(4): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199904011.htm [15] 盛金昌, 速宝玉, 魏保义, 2001. 基于Taylor展开随机有限元法的裂隙岩体随机渗流分析. 岩土工程学报, 23(4): 485-488. doi: 10.3321/j.issn:1000-4548.2001.04.022 [16] 杨金忠, 蔡树英, 2000. 多孔介质中水分及溶质运移的随机理论. 北京: 科学出版社. [17] 姚磊华, 1999. 地下水水流模型的摄动待定系数随机有限元法. 水利学报, (7): 60-63. doi: 10.3321/j.issn:0559-9350.1999.07.011