Simulation of Nitrogen and Phosphorus Transport and Transformation in Saturated-Unsaturated Soil
-
摘要: 利用二维饱和-非饱和土壤氮磷运移转化模型nitrogen-2D对污水灌溉试验的实测数据进行了分析, 结果证明所提出的模型可以较好的描述土壤中的水分运动和氮的转化运移过程, 土壤含水量及铵态氮剖面模拟值与实测数据吻合程度较好.用检验过的数学模型模拟了不同污水灌溉方案下土壤及地下水中不同形态氮及磷的变化情况, 分析了不同灌溉方案下土壤的氮磷平衡和农田养分平衡状况, 结果表明: 适度的污水灌溉, 硝态氮和无机磷不会淋溶出1.5m土层, 不会对地下水造成氮磷污染; 施入土壤的铵态氮, 由于有较强的吸附性, 不易被作物直接吸收, 49%转化成硝态氮, 作物根系吸收以硝态氮为主, 氮肥当季利用率为23.3%;反硝化是进行污水灌溉时旱地土壤氮素的主要损失形式, 约占施入氮量的12.6%.Abstract: Nitrogen-2D is a physically-based model developed on the basis of SWMS-2D to predict the fate of nitrogen and phosphorus following irrigation with effluent.To test the model, a sewage effluent irrigation experiment was conducted.In this paper, the nitrogen-2D model is extended and tested with data from four effluent-irrigated winter wheat plantations.The results show that, on the whole, measured and simulated values are in reasonably good agreement, especially soil water content and soil ammonia content, which indicates that it can offer reliable prediction of the fate of water and nitrogen in spite of the relative simplicity of the model.The model is then used to estimate the soil nitrogen and phosphorus behavior in winter wheat field under the same situation with different concentrations of nitrogen and phosphorus in the sewage effluent.The results show that under the simulated conditions, no nitrogen or phosphorus leaching happened at 1.5 m depth in the period, and because of the strong adsorbability of the soil, 49% of the ammonia following irrigation with effluent was turned into nitrate by nitration instead of uptake.Denitrification of nitrate is the major channel resulting in loss of soil nitrogen fertilizer with a volume of about 12.6% of the input nitrogen.Nitrate is much more available for crop than ammonia and the current fertilization utilization rate is 23.3%.
-
表 1 2004年灌水日期及灌水量
Table 1. The irrigation date and volume in 2004
表 2 灌溉水中各形态氮浓度
Table 2. Nitrogen concentration in the sewage effluent
表 3 土壤特征参数
Table 3. Soil characteristic parameters
表 4 不同灌溉方案下土壤氮素平衡值
Table 4. Balance of nitrogen and phosphorus
-
[1] Campell, C. A., Jame, Y. W., Winkleman, G. E., 1994. Min-eralization rate constants and their use for esti matingnitrogen mineralization in some Canadian prairie soils. Canadian Journal of Soil Science, 64: 333-343. [2] Eckersten, H., Hansson, P. E., Johnsson, H., 1996. SOILNmodel user′s manual. Uppsala, Swedish University of Agricultural Sciences. [3] Feng, S. Y., Qi, Z. M., Huang, G. H., et al., 2003. Effect offresh water and sewage irrigation on growth of winterwheat. Journal of Irrigation and Drainage, 22 (3): 11-14 (in Chinese with English abstract). [4] Harmsen, K., 1984. Nitrogen fertilizer use in rained agricul-ture. Fertilizer Research, 5: 371-382. doi: 10.1007/BF01049117 [5] Huang, Y. F., Li, Y. Z., Lu, J. W., 1996. Si mulation of soilnitrogen transport under field conditions: Ⅱ. Verification and application. Journal of Hydraulic Engineer-ing, 6: 15-23 (in Chinese with English abstract). [6] Johnsson, H., Bergstrom, L., Jansson, P. E., et al., 1987Si mulated nitrogen dynamics and losses in a layered ag-ricultural soil. Agriculture, Ecosystems and Environment, 18: 333-356. [7] Ju, X. T., 2000. Fate and transformation of fertilizer N inwinter wheat/summer maize system: [Dissertation]Chi-na Agricultural University, Beijing (in Chinese). [8] Li, Z. P., Zhang, J. B., Qu, J. H., et al., 2004. Influence onshallowground water by NH4-Nin polluted river. Earth Science—Journal of China University of Geosciences, 29 (3): 363-368 (in Chinese with English abstract). [9] Lu, C. Y., Yang, J. Z., Jayawardane, N., et al., 2004. Nu-merical modeling of nitrogen transport and transformationin sewage irrigation and treat ment system. Journalof Hydraulic Engineering, (5): 83-88 (in Chinese with English abstract). [10] Lu, W., McGechan, M. B., 1998. Areview of carbon and ni-trogen processes in four nitrogen dynamics models. Journal of Agriculture Engineering Research, 69: 279-305. doi: 10.1006/jaer.1997.0250 [11] Ryden, J. C., Lund, L. J., Letey, J., et al., 1979. Directmeasurement of denicificationloss fromsoils: Ⅱ. Devel-opment and application of field methods. Soil. Sci. Soc. Amer. J. , 43: 110-119. doi: 10.2136/sssaj1979.03615995004300010020x [12] Zhou, A. G., Chen, Y. Z., Cai, H. S., et al., 2003. New wayin NO3--N contamination study of water environment: Correlative method of 15N & 18O. Earth Science—Journal of China University of Geosciences, 28 (2): 219-224 (in Chinese with English abstract). [13] 冯绍元, 齐志明, 黄冠华, 等, 2003. 清、污水灌溉对冬小麦生长发育影响的田间试验研究. 灌溉排水学报, 22 (3): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200303002.htm [14] 黄元仿, 李韵珠, 陆锦文, 1996. 田间条件下土壤氮素运移的模拟模型: Ⅱ. 田间检验与应用. 水利学报, 6: 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB606.001.htm [15] 巨晓棠, 2000. 冬小麦/夏玉米轮作体系中土壤肥料的转化及去向(博士学位论文). 北京: 中国农业大学. [16] 李志萍, 张金炳, 屈吉鸿, 等, 2004. 污染河水中氨氮对浅层地下水的影响. 地球科学——中国地质大学学报, 29 (3): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200403016.htm [17] 陆垂裕, 杨金忠, Jayawardane, N., 等, 2004. 污水灌溉系统中氮素转化运移的数值模拟分析. 水利学报, (5): 83-88. [18] 周爱国, 陈银琢, 蔡鹤生, 等, 2003. 水环境硝酸盐氮污染研究新方法——15N和18O相关法. 地球科学——中国地质大学学报, 28 (2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302018.htm