Parameter and Index for Delineation and Evaluation of Co-Rich Crust Resources
-
摘要: 大洋海山钴结壳集海洋资源和环境双重信息, 各国对它的调查研究方兴未艾.钴结壳资源勘查的最终目的是圈定钴结壳矿区和开发钴结壳资源.迄今为止, 国内外尚未就钴结壳矿区圈定和资源评价给出具体的参数指标, 基于我国近十年对西太平洋26座海山钴结壳资源调查, 结合太平洋环境资料, 在深入分析钴结壳厚度、丰度、品位、覆盖率、资源量、面积, 海山坡度和水深资料的基础上, 对13座重点海山进行了钴结壳矿区圈定、资源评价和钴结壳分布规律的系统研究, 进而提出圈定钴结壳矿区的八项重要参数指标: 钴结壳矿区的结壳厚度为≥3cm或≥4cm, 取决于海山具体地理位置; 水深为≤2500m或≤3000m;Co含量为≥0.50%或≥0.60%;丰度为≥60kg/m2或≥70kg/m2; 坡度为≤15°; 结壳覆盖率为≥30%;钴结壳矿区的申请面积为17000~20000km2, 矿区最终保留面积为5000~6000km2.钴结壳矿区8项参数指标的提出, 将有力地促进大洋钴结壳矿区圈定、资源量计算和资源评价工作, 为我国积极参与联合国海底管理局制定钴结壳资源开发利用规章制度提供量化参考指标.Abstract: Marine Co-riched crusts are important as potential mineral resources for Co, Ni, Pt, Mn, and other metals, as well as for the paleoenvironment signals stored in their stratigraphic layers.The higher Co, Ni and Pt content of crusts relative to abyssal polymetallic nodules and hydrothermal deposits have made seamount crusts a potential target for commercial exploitation and has thus led to a surge of interest in their genesis and geochemistry.Twenty-six seamounts and guyots in the Western Pacific (Maggellan Seamounts, Marcus-Wake Mountains, Marshall Islands, Mid-Pacific Mountains, Line Islands) were sampled in detail, environmentally surveyed, and photographed by bottom cameras in order to better understand the distribution, origin, and evolution of marine Co-enriched crusts by Second Institute of Oceanography of SOA and Guangzhou Marine Geological Survey of MLR in the last decade.The major purpose of exploiting Co-riched crusts is to delineate and mine the deposits.Unfortunately, the parameter and index for delineating and evaluating the crust resources are not available so far.Based on the various data collected from the twenty-six seamounts and guyots, together with marine environment information of the Pacific, we have analyzed the changes of crust thickness, abundance, grade, coverage, resource amount, seamount slope and water depth by the quantitative method.We determined the mine area, studied the distribution characteristics of crust resources, delineated and evaluated the crust resources of thirteen typical seamounts and guyots.Accordingly proposed eight important parameters and indexes for delineating and evaluating Co-enriched crust deposits: (1) crust thickness ≥3 cm or ≥4 cm, depending on the different seamount locations; (2) water depth ≤2 500 m or ≤3 000 m; (3) Co content ≥0.50% or ≥0.60%; (4) abundance ≥ 60 kg/m2 or ≥70 kg/m2; (5) seamount slope ≤15°; (6) crust coverage ≥30%; (7) application area 17 000-20 000 km2; (8) reservation area 5 000-6 000 km2.The parameters and indexes we present here will promote the deposit delineation, resource estimation and evaluation, and will also provide the quantitative parameter index for our country's active participation into the establishment of regulations on exploiting Co-enriched crust resources by the International Sea-bed Authority of United Nations.
-
Key words:
- Western Pacific /
- Co-rich crust /
- resource evaluation /
- parameter index
-
表 1 研究区海山水深与钴结壳丰度、Co含量关系
Table 1. Relationship between seamount water depths and abundances, Co contents of crusts in study area
表 2 麦哲伦海山区海底照相得出不同水深段的钴结壳覆盖率
Table 2. Crust coverages photographed by bottom camera from different water depths in Maggellan Seamounts
表 3 钴结壳矿区和多金属结核矿区对比
Table 3. Comparison between cobalt crust deposit and polymetallic nodule deposit
-
[1] Craig, J. D., Andrews, J. M., Meylan, A. M., 1982. Ferro-manganese deposits in the Hawaiian Archipelago. Marine Geology, 45: 127-157. doi: 10.1016/0025-3227(82)90183-9 [2] Frank, D. J., Meylan, M. A., Craig, J. D., et al., 1976. Ferro-manganese deposits of the Hawaiian Archipelago. Ha-waii Inst. Geophys. Rep., HIG-76-14, 71. [3] Halbach, P., Manhei m, F. T., Otten, P., 1982. Co-rich ferro-manganese deposits in the marginal seamount regions of the central Pacific basin—Results of the Midpac′81. Erzmetall, 35 (9): 447-453. [4] He, G. W., Liang, D. H., Song, C. B., et al., 2005. Determi-ning the distribution boundary of cobalt-rich crusts ofguyot by synchronous application of sub-bottom profi-ling and deep-sea video recording. Earth Science—Journal of China University of Geosciences, 30 (4): 509-512 (in Chinese with English abstract). [5] Hein, J. R., Kirschenbaum, H., Schwab, W. C., et al., 1990. Mineralogy and geochemistry of Co-rich ferromanga-nese crusts and substrate rocks from Karin Ridge andJohnston Island, Farnella Cruise F7-86-HW. U. S. Geological Survey Open File Report, 90-298. [6] Hein, J. R., Manhei m, F. T., Schwab, W. C., 1985. Ferro-manganese crusts from Necker Ridge, Horizon guyotand S. P. Lee guyot: Geological considerations. Marine Geology, 69: 25-54. doi: 10.1016/0025-3227(85)90132-X [7] Hein, J. R., Morgan, C. L., 1999. Influence of substrate rocks on Fe-Mn crust composition. Deep-Sea Research I, 46: 855-875. doi: 10.1016/S0967-0637(98)00097-1 [8] Hein, J. R., Morgenson, L. A., Clague, D. A., et al., 1987. Cobalt-rich ferromanganese crusts from the exclusiveeconomic zone of the United States and nodules from the oceanic Pacific. In: Scholl, D. W., Grantz, A., Ved-der, J. G., eds., Geology and resource potential of thecontinental margin of western North America and adja-cent ocean basins—Beaufort Sea to Baja California. Cir-cum-Pacific Council for Energy and Mineral Resources. Res. Earth Science Series, V. 6, Houston, Texas. [9] Hein, J. R., Schwab, W. C., Davis, A., 1988. Cobalt-andplatinum-rich ferromanganese crusts and associatedsubstrate rocks from the Marshall Islands. Marine Geology, 78: 255-283. doi: 10.1016/0025-3227(88)90113-2 [10] Hugh, C. J., Paul, A. W., 1999. Stratigraphy, paleoceanogra-phy, and evolution of Cretaceous Pacific guyots: Relicsfroma greenhouse earth. American Journal of Science, 299: 341-392. doi: 10.2475/ajs.299.5.341 [11] James, Z., Mark, P., Lisa, S., et al., 2001. Trend, rhythms, and aberrations in global cli mate65Ma to present. Science, 292: 686-693. doi: 10.1126/science.1059412 [12] Manheim, F. T., 1986. Marine cobalt resources. Science, 232: 600-608. doi: 10.1126/science.232.4750.600 [13] McMurtry, G. M., Vonder Haar, D. L., Eisenhauer, A., etal., 1994. Cenozoic accumulation history of a Pacific fer-romanganese crust. Earth and Planetary Science Letters, 125: 105-118. doi: 10.1016/0012-821X(94)90209-7 [14] Pan, J. H., Liu, S. Q., Eric, D., 2002. The effects of marinephospharization on element concentration of cobalt-richcrusts. Acta Geoscientia Sinica, 23 (5): 403-407 (in Chinese with English abstract). [15] Rao, V. P., 1987. Mineralogy of polymetallic nodules and as-sociated sedi ments from the Central Indian Ocean basin. Marine Geology, 74 (1-2): 151-157. doi: 10.1016/0025-3227(87)90011-9 [16] Richey, J., 1987. Assessment of cobalt rich manganese crustresources on Horizon and S. P. Lee Guyots. U. S. EEZMarine Mining, 6: 231-243. [17] Segl, M., Mangini, A., Bonani, G., et al., 1984.10Be datingof the inner structure of Me-encrustations applying theZurich tandem accelerator. Nuclear Instruments andMethods in Physics Research, B5: 359. [18] United Nations Ocean Economics and Technology Office, 1989. Delineation and evaluation of manganese nodulesdeposits. Translated by Jin, J. C., China Ocean Press, Beijing (in Chinese). [19] Xu, M. Z., et al., eds, 1999. Submarine mineral resources. O-cean University of Qingdao Press, Qingdao (in Chinese). [20] Yao, D., Zhang, L. J., John, W., et al., 1996. Mineralogy andgeochemistry of ferromanganese crusts from JohnstonIsland EEZ. Marine Geology & Quaternary Geology, 16 (1): 33-49 (in Chinese with English abstract). [21] Zhang, F. Y., 2001. Evaluation principle and delineationmethod of polymetallic nodule resources. Ocean Press, Beijing (in Chinese). [22] Zhang, W. Y., Zhang, F. Y., Yang, K. H., et al., 2007. Frac-tal characteristics of resources quantity of cobalt crustsand seamount topography, the West Pacific. Front. Earth Sci. China, 1 (2): 233-240. doi: 10.1007/s11707-007-0029-y [23] Zhang, H. S., Zhao, P. D., Chen, S. Y., et al., 2001. Mineral-izing characters of cobalt-rich ferromanganese noduleand crust in central Pacific ocean seamount. Earth Science—Journal of China University of Geosciences, 26 (2): 205-209 (in Chinese with English abstract). [24] 何高文, 梁东红, 宋成兵, 等, 2005. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线. 地球科学——中国地质大学学报, 30 (4): 509-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504019.htm [25] 联合国海洋经济与技术处, 1989. 锰结核矿址的圈定与评价. 金建才译. 北京: 海洋出版社, 24-43. [26] 潘家华, 刘淑琴, Eric, D., 2002. 大洋磷酸盐化作用对富钴结壳元素富集的影响. 地球学报, 23 (5): 403-407. doi: 10.3321/j.issn:1006-3021.2002.05.003 [27] 徐脉直等编著, 1999. 海洋固体矿产. 青岛: 青岛海洋大学出版社. [28] 姚德, 张丽洁, John, W., 等, 1996. 约翰斯顿岛附近海域铁锰结壳矿物学和地球化学研究. 海洋地质与第四纪地质, 16 (1): 33-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ601.004.htm [29] 张富元, 2001. 大洋多金属结核资源评价原理和矿区圈定方法. 北京: 海洋出版社. [30] 张海生, 赵鹏大, 陈守余, 等, 2001. 中太平洋海山多金属结壳的成矿特征. 地球科学——中国地质大学学报, 26 (2): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102022.htm