Precise Measurement of Nd Isotopic Ratio of Micro-Samples Using NdO+ Method
-
摘要: 微量样品Nd同位素比值的高精度测定在地球科学和环境科学研究中具有重要的意义, 同时也是同位素测定的难点.对1ng以下的国际标准样品进行了高精度质谱测试.采用新一代高精度热电离质谱计(IsoProbe-T) 分别运用Nd+和NdO+测试方法, 多次测量常量(≥200ng) 和超微量(0.25ng、0.5ng和1ng) Nd标准物质(Ames、JMC和Jndi-1) 和实验室内部标准LRIG-Nd溶液.质谱计同位素比值测量均采用静态多接收模式.143Nd/144Nd比值测量的内部精度均优于0.003%.与传统的Nd+测量方式相比, NdO+测量方式具有显著的优势, 即有极高的灵敏度, 是Nd+分析灵敏度的100倍左右.Abstract: Precise measurement of Nd isotopic ratio of micro-samples, being one of the most difficult tasks in measurements of isotopic ratios, plays an important role in research fields of earth and environmental sciences.This study reports the results of precise measurements of Nd isotopic ratios on the solutions of international standard material using less 1 ng samples.Applying the Nd+ and NdO+ measurement methods, solutions of the standard material (Ames, JMC, and Jndi-1) and the laboratory-own reference material (LRIG-Nd), which contain ≥200 ng to 0.25 ng Nd samples, were measured by a new thermal ionization mass spectrometer (IsoProbe-T).Data acquisition during the isotopic measurement was done by using a static mode with a multiple-receiver configuration.Internal and external precisions obtained for all the measurements of 143Nd/144Nd ratio were better than 0.003%.Compared with the Nd+ method, Nd isotopic measurement using the NdO+ method distinguishably displays an advantage in high sensibility of measurement, being about 100 times higher than that by using the Nd+ method.
-
Key words:
- micro-sample /
- Nd isotope /
- oxide /
- correction of oxygen interference
-
表 1 不同测量方式所需的质谱计接收器的排列方式
Table 1. Collector arrangement scheme for different measurement techiques
表 2 采用Nd+和NdO+测量方式测定标准物质143Nd/144Nd同位素比值
Table 2. 143Nd/144Nd isotopic ratios of standard material with Nd+ technique and NdO+ technique
表 3 报道的氧同位素组成对比
Table 3. Compilation of the oxygen isotope ratios published in the literature
表 4 标准物质Jndi-1测量数据采用不同方法校正143Nd/144Nd比值的对比
Table 4. Comparison with different mass fraction calibration laws for Jndi-1 standard material
表 5 采用NdO+测量方式对标准物质测试结果与对比
Table 5. Comparison of recommended value and determination results of standard material with NdO+ technique
-
[1] Allegre, C. J., Dupre, B., Negrel, P., et al., 1996. Sr-Nd-Pbisotope systematic in Amazon and Congo River System: Constraints about erosion processes. Chem. Geol., 131 (1-4): 93-112. doi: 10.1016/0009-2541(96)00028-9 [2] Abouchami, W., Galer, S. J. G., Koschinsky, A., 1999. Pband Nd isotopes in NE Atlantic Fe-Mn crusts: Proxiesfor trace metal paleosources and paleocean circulation. Geochim. Cosmochim. Acta, 63: 1489-1505. doi: 10.1016/S0016-7037(99)00068-X [3] Bayon, G., German, C. R., Boella, R. M., et al., 2002. Animproved method for extracting marine sedi ment fractions and its application to Sr and Nd isotopic analysis. Chem. Geol., 187: 179-199. doi: 10.1016/S0009-2541(01)00416-8 [4] Chavagnac, V., 1998. Behaviour of the Sm-Nd isotopic sys-tem during metamorphism: Examples from the HT-LPmetamorphic terrane of the Limpopo belt, South Africaand the UHP metamorphic terrane of Dabieshan, Cen-tral China. These dedoctorat, Universite de Rennes, Rennes, 405. [5] Caro, G., Bourdon, B., Birck, J. L., et al., 2006. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the earthmantle. Geochim. Cosmochim. Acta, 70: 164-191. doi: 10.1016/j.gca.2005.08.015 [6] Charlier, B. L. A., Ginibre, C., Morgan, D., et al., 2006. Methods of the microsampling and high-precision analysis of strontiumand rubidiumisotopes at single crystalscale for petrological and geochronological applications. Chem. Geol., 232: 114-133. doi: 10.1016/j.chemgeo.2006.02.015 [7] Depaolo, D. J., Wasserberg, G. J., 1976. Nd isotopic variations and petrogenic models. Geophys. Res. Lett., 3: 249-252. doi: 10.1029/GL003i005p00249 [8] Dickin, A. P., 2004. Radiogenic isotope geology. Cambridge University Press. [9] Faure, G., 2005. Principles and applications. Third Edition. John Wiley & Sons, Inc. [10] Griselin, M., Van Belle, J. C., Pomiès, Z, C., et al., 2001. Animproved chromatographic separation technique of Ndwith application to NdOisotope analysis. Chem. Geol., 172 (3-4): 347-359. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201509003.htm [11] Habfast, K., 1998. Fraction correction and multiple collectorsin thermal ionization isotope ratio mass spectrometry. Int. J. Mass Spectrom., 176: 33-148. [12] International Union of Pure and Applied Chemistry, 1991. Commission on atomic weights and isotopic abun-dances. Pure Appl. Chem., 63: 991. doi: 10.1351/pac199163070991 [13] Keiko, H., James, T., Cole, S., et al., 1998. Negative ionization processes of Os for isotopic measurement. Int. J. Mass Spectrom., 176: 189-201. doi: 10.1016/S1387-3806(98)14021-6 [14] Lugmair, G. W., 1975. The lunar exterior. Proc. Lunar Sci. Con., 6th, 1419-1429. [15] Lugmair, G. W., 1976. The lunar exterior. Proc. Lunar Sci. Con., 7th, 2009-2033. [16] Liu, Y. Z., Huang, M., Masuda, A., et al., 1998. High-precision determination of osmiumand rheniumisotope ratios byin situ oxygenisotope ratio correction using nega-tive thermal ionization mass spectrometry. Int. J. MassSpectrom. Ion. Processes, 173: 163-175. doi: 10.1016/S0168-1176(97)00270-X [17] Makishima, A., Nakamura, E., 1991. Precise measurement ofCe isotope compositionin rock sample. Chemical Geology, 94: 1-11. doi: 10.1016/S0009-2541(10)80012-9 [18] Müller, W., Mancktelow, N. S., Meier, M., 2000. Rb-Sr mi-crochrons of synkinematic mica in mylonites: An exam-ple from the DAV fault of the Eastern Alps. EarthPlanet. Sci. Lett., 180: 385-397. doi: 10.1016/S0012-821X(00)00167-9 [19] Murphy, J. B., Nance, R. D., 2002. Sm-Nd isotopic systemat-ics as tectonic tracers: An example from West Avaloniain the Canadian Appalachians. Earth-Sci. Rev., 59: 77-100. doi: 10.1016/S0012-8252(02)00070-3 [20] Nier, A. O., 1950. A redetermination of the relative abun-dances of theisotopes of carbon, nitrogen, oxygen, argonand potassium. Phys. Rev., 789-793. [21] Pin, C., Zalduegui, J. F. S., 1997. Sequential separation oflight rare-earth elements, thoriumand uraniumby mini-aturized extraction chromatography: Application to iso-topic analyses of silicate rocks. Anal. Chim. Acta, 339: 79-89. doi: 10.1016/S0003-2670(96)00499-0 [22] Reisberg, L., Zindler, A., 1986. Extreme isotopic variationsin the upper mantle: Evidence from Ronda. Earth Planet. Sci. Lett., 81: 29-45. doi: 10.1016/0012-821X(86)90098-1 [23] Rutberg, R. L., Hemming, S. R., Goldstein, S. L., 2000. Re-duced North Atlantic deep water flux to the glacialSouthern Ocean inferred from neodymiumisotope ratios. Nature, 405: 935-938. doi: 10.1038/35016049 [24] Scharer, H. D., Martin, E. E., 2004. Circulationin the south-ern ocean during the Paleogene inferred from neodymi-umisotopes. Earth Planet. Sci. Lett., 228: 391-405. doi: 10.1016/j.epsl.2004.10.016 [25] Thirlwall, M. F., 1991. High-precision multicollector isotopicanalysis of lowlevels of Nd as oxide. Chemical Geology, 94: 13-22. doi: 10.1016/S0009-2541(10)80013-0 [26] Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A neodymium isotopic reference in consistency withLaJolla neodymium. Chem. Geol., 168: 279-281. doi: 10.1016/S0009-2541(00)00198-4 [27] Thirlwall, M. F., Anczkiewicz, R., 2004. Multidynamic iso-tope ratio analysis using MC-ICP-MS and the causes ofsecular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrom., 235: 59-81. doi: 10.1016/j.ijms.2004.04.002 [28] Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J., et al., 1981. Precise determinations of Sm/Nd ratios, Sm andNd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta, 45: 2311-2323. doi: 10.1016/0016-7037(81)90085-5 [29] Wieser, M. E., Schwieters, J. B., 2005, The development ofmultiple collector mass spectrometry for isotope ratiomeasurements. Int. J. Mass Spectrom., 242: 97-115. doi: 10.1016/j.ijms.2004.11.029