Oxygen and Carbon Isotope Records of Calcareous Nannofossils from the West Philippine Sea during the Last 190 ka
-
摘要: 对西菲律宾海Ph05-5柱状样190ka以来钙质超微化石进行了氧碳同位素分析.研究结果表明, 钙质超微化石δ18O值在末次间冰期(MIS 5e) 和全新世明显低于末次冰期(MIS5d~2) 和倒数第二次冰期(MIS6).超微化石δ18O值与浮游和底栖有孔虫δ18O值都呈明显的正相关关系, 但超微化石δ18O平均值比浮游有孔虫Globigerinoides rubber δ18O平均值高0.431×10-3, 比Neogloboquadrina dutertrei δ18O平均值低0.410×10-3, 而这三者又远远低于底栖有孔虫Cibicides wullerstorfi的δ18O平均值.超微化石δ13C值变化阶段性特征明显, 并与该孔超微化石绝对丰度变化趋势极为相似, 二者共同反映出西菲律宾海大约从190ka到110ka的MIS6和大约MIS 5e期, 表层海水初级生产力相当稳定且显著低于其他各时期; 大约从MIS5d期开始表层初级生产力显著上升, 初级生产力的这一高值一致持续到约25ka左右的末次冰期; 在25ka以来的MIS1、2期, 表层初级生产力有所下降, 但仍高于190ka到110ka的MIS6和MIS 5e期.Abstract: The piston core Ph05-5 recovered from the West Philippine Sea (16.049 3°N, 124.344 8°E, water depth 3 382 m) was used to study the δ18O and δ13C variations of calcareous nannofossils.The δ18O values of calcareous nannofossils were obviously lower in Holocene and the last interglaciation than those in the last and the penultimate glaciation.During the last 190 ka the nannofossil δ18O values were positively correlated with those of planktonic and benthic foraminifera from the same core.But the average δ18O value of nannofossils was 0.431×10-3, higher than that of planktonic foraminifera Globigerinoides rubber, and was 0.410×10-3, lower than that of planktonic foraminifera Neogloboquad rina dutertrei.All the above three average δ18O values were much lower than those of benthic foraminifera Cibicides wullerstorfi.The change of nannofossil δ13C values showed similar trends with the absolute abundance of calcareous nannofossils in core Ph05-5, which also indicates the primary productivity variations in the West Philippine Sea.The primary productivity stayed at a stable but relatively low level at MIS 6 and MIS 5e.There was an abrupt rise at the beginning of MIS 5d for the primary productivity which retained high value until 25 ka BP.The primary productivity showed a slight decline during MIS 2 and MIS 1, but still higher than that of MIS 6 and MIS 5e.
-
表 1 Ph05-5柱状样AMS14C测年结果
Table 1. AMS14C ages of core Ph05-5
表 2 Ph05-5柱状样的氧同位素地层
Table 2. Oxygen isotope stratigraphy of core Ph05-5
表 3 Ph05-5柱状样钙质超微化石与浮游有孔虫和底栖有孔虫氧同位素值之间的相关系数
Table 3. Correlation coefficients between nannofossil δ18O values and that of foraminifers
表 4 Ph05-5柱状样钙质超微化石与浮游有孔虫和底栖有孔虫氧同位素值
Table 4. δ18O values of nannofossils and foraminifers from core Ph05-5
-
[1] Anderson, T. F., Cole, S. A., 1975. The stable isotope geochemistry of marine coccoliths: A preliminary comparison with planktonic foraminifera. Journal of Foraminiferal Reaearch, 5: 188-192. doi: 10.2113/gsjfr.5.3.188 [2] Anderson, T. F., Steinmetz, J. C., 1981. Isotopic and biostratigraphical records of calcareous nannofossils in a Pleistocene core. Nature, 294 (5893): 741-744. [3] Baumann, K. H., Andruleit, H. A., Su, X., 1998. Comparison of different preparation techniques for quantitative nannofossil studies. Journal of Nannoplankton Research, 20 (2): 75-80. [4] Bollmann, J., Brabec, B., Cortes, M. Y., et al., 1999. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method). Marine Micropaleontology, 38 (1): 29-38. doi: 10.1016/S0377-8398(99)00032-8 [5] Dudley, W. C., Blackwelder, P., Brand, L., et al., 1986. Stable isotopic composition of coccoliths. Marine Micropaleontology, 10: 1-8. doi: 10.1016/0377-8398(86)90021-6 [6] Dudley, W. C., Duplessy, J. C., Blackwelder, P. L., et al., 1980. Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature, 285 (5762): 222-223. doi: 10.1038/285222a0 [7] Dudley, W. C., Goodney, D. E., 1979. Oxygen isotope content of coccoliths grown in culture. Deep Sea Research Ⅰ, 26 (5): 495-503. doi: 10.1016/0198-0149(79)90092-X [8] Dudley, W. C., Nelson, C. S., 1989. Quaternary surface-water stable isotope signal fromcalcareous nannofossils at DSDP Site 593, southern Tasman Sea. Marine Micropaleontology, 13 (4): 353-373. doi: 10.1016/0377-8398(89)90025-X [9] Goodney, D. E., Margolis, S. V., Dudley, W. C., et al., 1980. Oxygen and carbon isotopes of recent calcareous nannofossils as palaeoceanographic indicators. Marine Micropaleontology, 5: 31-42. doi: 10.1016/0377-8398(80)90005-5 [10] Jian, Z. M., Li, B. H., Wang, J. L., 2003. Formation and evolution of the western Pacific WarmPool recorded by microfossils. Quaternary Sciences, 23 (2): 185-192 (in Chinese with English abstract). [11] Jiang, L. B., Jian, Z. M., Cheng, X. R., 2004. Oxygen and carbon stable isotopic records of planktonic foraminifers from the Western Equatorial Pacific since the Last Glacial Maximum. Marine Geology and Quaternary Geology, 24 (2): 67-71 (in Chinese with English abstract). [12] Kinkel, H., Baumann, K. H., Cepek, M., 2000. Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology, 39 (1-4): 87-112. doi: 10.1016/S0377-8398(00)00016-5 [13] Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 289: 1719-1724. doi: 10.1126/science.289.5485.1719 [14] Liu, C. L., Cheng, X. R., Wang, R. J., et al., 2005. Oxygen and carbon isotope records of Quaternary calcareous nannofossils from the western Pacific Warm Pool and their paleoceanographical significance. Earth Science-Journal of China University of Geosciences, 30 (5): 559-603 (in Chinese with English abstract). [15] Liu, C. L., Cheng, X. R., Zhu, Y. H., et al., 2002. Oxygen and carbon isotope records of calcareous nannofossils for the past 1 Ma in the South China Sea. Chinese Science Bulletin, 40 (10): 798-803. [16] Margolis, S. V., Kroopnick, P. M., Goodney, D. E., et al., 1975. Oxygen and carbonisotopes fromcalcareous nannofossils as paleoceanographic indicators. Science, 189: 555-557. doi: 10.1126/science.189.4202.555 [17] Martinson, D. G., Pisias, N. G., Hays, J. D., et al., 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300, 000 year chronostratigraphy. Quaternary Researtch, 27: 1-29. [18] Molfino, B., McIntyre, A., 1990. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5: 997-1008. doi: 10.1029/PA005i006p00997 [19] Okada, H., Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts, 20 (4): 355-364. doi: 10.1016/0011-7471(73)90059-4 [20] Stoll, H. M., Ziveri, P., 2002. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Marine Micropaleontology, 46 (1-2): 209-221. doi: 10.1016/S0377-8398(02)00040-3 [21] Su, X., Ma, W. L., Cheng, Z. B., 2004. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from Central Pacific Seamounts. Earth Science—Journal of China University of Geosciences, 29 (2): 141-147 (in Chinese with English abstract). [22] Thompson, P. R., Be, W. H. A., Duplessy, J. C., et al., 1979. Disappearance of pink-pigmented Globigerina rubber at 12 000 000yr BP in the Indian and Pacific Oceans. Nature, 280: 554-558. doi: 10.1038/280554a0 [23] Tian, J., Wang, P. X., Cheng, X. R., 2004. Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerinaat ODP Site1143, Southern South China Sea. Earth Science—Journal of China University of Geosciences, 29 (1): 1-6 (in Chinese with English abstract). [24] Visser, K., Thunell, R., Stott, L., 2003. Magnitude and timing of temperature change in the Indo-Pacific Warm Pool during deglaciation. Nature, 421: 152-155. doi: 10.1038/nature01297 [25] Webster, P. J., Magana, V. O., Pal mer, T. N., et al., 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103 (C7): 14451-14510. doi: 10.1029/97JC02719 [26] Ziveri, P., Stoll, H., Probert, I., et al., 2003. Stable isotope "vital effects" in coccolith calcite. Earth and Planetary Science Letters, 210 (1-2): 137-149. doi: 10.1016/S0012-821X(03)00101-8 [27] 翦知湣, 李保华, 王吉良, 2003. 从微体化石看西太平洋暖池的形成与演化. 第四纪研究, 23 (2): 185-192. doi: 10.3321/j.issn:1001-7410.2003.02.008 [28] 蒋来宾, 翦知湣, 成鑫荣, 2004. 赤道西太平洋末次盛冰期以来的浮游有孔虫氧碳稳定同位素记录. 海洋地质与第四纪地质, 24 (2): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200402011.htm [29] 刘传联, 成鑫荣, 王汝建, 等, 2005. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征及意义. 地球科学——中国地质大学学报, 30 (5): 559-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505006.htm [30] 刘传联, 成鑫荣, 祝幼华, 等, 2002. 南海南部近百万年来钙质超微化石氧、碳同位素记录. 科学通报, 47 (5): 330-335. doi: 10.3321/j.issn:0023-074X.2002.05.003 [31] 苏新, 马维林, 程振波, 2004. 中太平洋海山区富钴结壳的钙质超微化石地层学研究. 地球科学——中国地质大学学报, 29 (2): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402003.htm [32] 田军, 汪品先, 成鑫荣, 2004. 南海ODP1143站底栖有孔虫Cibicidoides与Uvigerina稳定氧碳同位素值的均衡试验. 地球科学——中国地质大学学报, 29 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401000.htm