• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西菲律宾海190ka以来钙质超微化石的氧碳同位素记录

    赵京涛 李铁刚 常凤鸣 李军

    赵京涛, 李铁刚, 常凤鸣, 李军, 2008. 西菲律宾海190ka以来钙质超微化石的氧碳同位素记录. 地球科学, 33(2): 183-189.
    引用本文: 赵京涛, 李铁刚, 常凤鸣, 李军, 2008. 西菲律宾海190ka以来钙质超微化石的氧碳同位素记录. 地球科学, 33(2): 183-189.
    ZHAO Jing-tao, LI Tie-gang, CHANG Feng-ming, LI Jun, 2008. Oxygen and Carbon Isotope Records of Calcareous Nannofossils from the West Philippine Sea during the Last 190 ka. Earth Science, 33(2): 183-189.
    Citation: ZHAO Jing-tao, LI Tie-gang, CHANG Feng-ming, LI Jun, 2008. Oxygen and Carbon Isotope Records of Calcareous Nannofossils from the West Philippine Sea during the Last 190 ka. Earth Science, 33(2): 183-189.

    西菲律宾海190ka以来钙质超微化石的氧碳同位素记录

    基金项目: 

    中国科学院知识创新工程项目 KZCX3-SW-233

    国家自然科学基金重点项目 90411014

    国家自然科学基金面上项目 40506013

    国家自然科学基金面上项目 40506015

    国家重点基础研究发展计划“973”项目 2007CB815903

    中国科学院海洋研究所知识创新工程青年人才领域前沿项目 2007-10

    详细信息
      作者简介:

      赵京涛(1980-), 男, 博士, 海洋地质专业.E-mail: zhaojingtao113@163.com

    • 中图分类号: P736.22;P597

    Oxygen and Carbon Isotope Records of Calcareous Nannofossils from the West Philippine Sea during the Last 190 ka

    • 摘要: 对西菲律宾海Ph05-5柱状样190ka以来钙质超微化石进行了氧碳同位素分析.研究结果表明, 钙质超微化石δ18O值在末次间冰期(MIS 5e) 和全新世明显低于末次冰期(MIS5d~2) 和倒数第二次冰期(MIS6).超微化石δ18O值与浮游和底栖有孔虫δ18O值都呈明显的正相关关系, 但超微化石δ18O平均值比浮游有孔虫Globigerinoides rubber δ18O平均值高0.431×10-3, 比Neogloboquadrina dutertrei δ18O平均值低0.410×10-3, 而这三者又远远低于底栖有孔虫Cibicides wullerstorfiδ18O平均值.超微化石δ13C值变化阶段性特征明显, 并与该孔超微化石绝对丰度变化趋势极为相似, 二者共同反映出西菲律宾海大约从190ka到110ka的MIS6和大约MIS 5e期, 表层海水初级生产力相当稳定且显著低于其他各时期; 大约从MIS5d期开始表层初级生产力显著上升, 初级生产力的这一高值一致持续到约25ka左右的末次冰期; 在25ka以来的MIS1、2期, 表层初级生产力有所下降, 但仍高于190ka到110ka的MIS6和MIS 5e期.

       

    • 图  1  Ph05-5岩心站位图, 箭头表示研究区内主要流系

      Fig.  1.  Location of core Ph05-5 used in this study. Arrows show the main ocean currents connected to this study

      图  2  Ph05-5岩心的δ18O曲线与标准化的δ18O曲线对比

      4个年代数据均为AMS14C年代, 图中数字为对应的氧同位素期, 虚线代表粉红色红拟抱球虫的绝灭界线, 灰色条带代表火山灰层

      Fig.  2.  Comparison between oxygen isotope curves core Ph05-5 and standardized curve

      图  3  Ph05-5柱状样190 ka以来钙质超微化石与浮游有孔虫和底栖有孔虫氧同位素曲线对比

      Fig.  3.  δ18O records of calcareous nannofossils compared with those of palnktonic foraminiferal (G. ruber and N. dutertrei) and benthic foraminiferal (C. wullerstorfi) during the last 190 ka from core Ph05-5

      图  4  Ph05-5柱状样190 ka以来钙质超微化石碳同位素变化曲线与绝对丰度变化曲线的对比

      Fig.  4.  Comparison between nannofossil carbon isotope records and absolute abundance records during the last 190 ka from core Ph05-5

      表  1  Ph05-5柱状样AMS14C测年结果

      Table  1.   AMS14C ages of core Ph05-5

      表  2  Ph05-5柱状样的氧同位素地层

      Table  2.   Oxygen isotope stratigraphy of core Ph05-5

      表  3  Ph05-5柱状样钙质超微化石与浮游有孔虫和底栖有孔虫氧同位素值之间的相关系数

      Table  3.   Correlation coefficients between nannofossil δ18O values and that of foraminifers

      表  4  Ph05-5柱状样钙质超微化石与浮游有孔虫和底栖有孔虫氧同位素值

      Table  4.   δ18O values of nannofossils and foraminifers from core Ph05-5

    • [1] Anderson, T. F., Cole, S. A., 1975. The stable isotope geochemistry of marine coccoliths: A preliminary comparison with planktonic foraminifera. Journal of Foraminiferal Reaearch, 5: 188-192. doi: 10.2113/gsjfr.5.3.188
      [2] Anderson, T. F., Steinmetz, J. C., 1981. Isotopic and biostratigraphical records of calcareous nannofossils in a Pleistocene core. Nature, 294 (5893): 741-744.
      [3] Baumann, K. H., Andruleit, H. A., Su, X., 1998. Comparison of different preparation techniques for quantitative nannofossil studies. Journal of Nannoplankton Research, 20 (2): 75-80.
      [4] Bollmann, J., Brabec, B., Cortes, M. Y., et al., 1999. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method). Marine Micropaleontology, 38 (1): 29-38. doi: 10.1016/S0377-8398(99)00032-8
      [5] Dudley, W. C., Blackwelder, P., Brand, L., et al., 1986. Stable isotopic composition of coccoliths. Marine Micropaleontology, 10: 1-8. doi: 10.1016/0377-8398(86)90021-6
      [6] Dudley, W. C., Duplessy, J. C., Blackwelder, P. L., et al., 1980. Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature, 285 (5762): 222-223. doi: 10.1038/285222a0
      [7] Dudley, W. C., Goodney, D. E., 1979. Oxygen isotope content of coccoliths grown in culture. Deep Sea Research Ⅰ, 26 (5): 495-503. doi: 10.1016/0198-0149(79)90092-X
      [8] Dudley, W. C., Nelson, C. S., 1989. Quaternary surface-water stable isotope signal fromcalcareous nannofossils at DSDP Site 593, southern Tasman Sea. Marine Micropaleontology, 13 (4): 353-373. doi: 10.1016/0377-8398(89)90025-X
      [9] Goodney, D. E., Margolis, S. V., Dudley, W. C., et al., 1980. Oxygen and carbon isotopes of recent calcareous nannofossils as palaeoceanographic indicators. Marine Micropaleontology, 5: 31-42. doi: 10.1016/0377-8398(80)90005-5
      [10] Jian, Z. M., Li, B. H., Wang, J. L., 2003. Formation and evolution of the western Pacific WarmPool recorded by microfossils. Quaternary Sciences, 23 (2): 185-192 (in Chinese with English abstract).
      [11] Jiang, L. B., Jian, Z. M., Cheng, X. R., 2004. Oxygen and carbon stable isotopic records of planktonic foraminifers from the Western Equatorial Pacific since the Last Glacial Maximum. Marine Geology and Quaternary Geology, 24 (2): 67-71 (in Chinese with English abstract).
      [12] Kinkel, H., Baumann, K. H., Cepek, M., 2000. Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology, 39 (1-4): 87-112. doi: 10.1016/S0377-8398(00)00016-5
      [13] Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 289: 1719-1724. doi: 10.1126/science.289.5485.1719
      [14] Liu, C. L., Cheng, X. R., Wang, R. J., et al., 2005. Oxygen and carbon isotope records of Quaternary calcareous nannofossils from the western Pacific Warm Pool and their paleoceanographical significance. Earth Science-Journal of China University of Geosciences, 30 (5): 559-603 (in Chinese with English abstract).
      [15] Liu, C. L., Cheng, X. R., Zhu, Y. H., et al., 2002. Oxygen and carbon isotope records of calcareous nannofossils for the past 1 Ma in the South China Sea. Chinese Science Bulletin, 40 (10): 798-803.
      [16] Margolis, S. V., Kroopnick, P. M., Goodney, D. E., et al., 1975. Oxygen and carbonisotopes fromcalcareous nannofossils as paleoceanographic indicators. Science, 189: 555-557. doi: 10.1126/science.189.4202.555
      [17] Martinson, D. G., Pisias, N. G., Hays, J. D., et al., 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300, 000 year chronostratigraphy. Quaternary Researtch, 27: 1-29.
      [18] Molfino, B., McIntyre, A., 1990. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5: 997-1008. doi: 10.1029/PA005i006p00997
      [19] Okada, H., Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts, 20 (4): 355-364. doi: 10.1016/0011-7471(73)90059-4
      [20] Stoll, H. M., Ziveri, P., 2002. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Marine Micropaleontology, 46 (1-2): 209-221. doi: 10.1016/S0377-8398(02)00040-3
      [21] Su, X., Ma, W. L., Cheng, Z. B., 2004. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from Central Pacific Seamounts. Earth Science—Journal of China University of Geosciences, 29 (2): 141-147 (in Chinese with English abstract).
      [22] Thompson, P. R., Be, W. H. A., Duplessy, J. C., et al., 1979. Disappearance of pink-pigmented Globigerina rubber at 12 000 000yr BP in the Indian and Pacific Oceans. Nature, 280: 554-558. doi: 10.1038/280554a0
      [23] Tian, J., Wang, P. X., Cheng, X. R., 2004. Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerinaat ODP Site1143, Southern South China Sea. Earth Science—Journal of China University of Geosciences, 29 (1): 1-6 (in Chinese with English abstract).
      [24] Visser, K., Thunell, R., Stott, L., 2003. Magnitude and timing of temperature change in the Indo-Pacific Warm Pool during deglaciation. Nature, 421: 152-155. doi: 10.1038/nature01297
      [25] Webster, P. J., Magana, V. O., Pal mer, T. N., et al., 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103 (C7): 14451-14510. doi: 10.1029/97JC02719
      [26] Ziveri, P., Stoll, H., Probert, I., et al., 2003. Stable isotope "vital effects" in coccolith calcite. Earth and Planetary Science Letters, 210 (1-2): 137-149. doi: 10.1016/S0012-821X(03)00101-8
      [27] 翦知湣, 李保华, 王吉良, 2003. 从微体化石看西太平洋暖池的形成与演化. 第四纪研究, 23 (2): 185-192. doi: 10.3321/j.issn:1001-7410.2003.02.008
      [28] 蒋来宾, 翦知湣, 成鑫荣, 2004. 赤道西太平洋末次盛冰期以来的浮游有孔虫氧碳稳定同位素记录. 海洋地质与第四纪地质, 24 (2): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200402011.htm
      [29] 刘传联, 成鑫荣, 王汝建, 等, 2005. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征及意义. 地球科学——中国地质大学学报, 30 (5): 559-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505006.htm
      [30] 刘传联, 成鑫荣, 祝幼华, 等, 2002. 南海南部近百万年来钙质超微化石氧、碳同位素记录. 科学通报, 47 (5): 330-335. doi: 10.3321/j.issn:0023-074X.2002.05.003
      [31] 苏新, 马维林, 程振波, 2004. 中太平洋海山区富钴结壳的钙质超微化石地层学研究. 地球科学——中国地质大学学报, 29 (2): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402003.htm
      [32] 田军, 汪品先, 成鑫荣, 2004. 南海ODP1143站底栖有孔虫Cibicidoides与Uvigerina稳定氧碳同位素值的均衡试验. 地球科学——中国地质大学学报, 29 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401000.htm
    • 加载中
    图(4) / 表(4)
    计量
    • 文章访问数:  3469
    • HTML全文浏览量:  106
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-07-08
    • 刊出日期:  2008-03-25

    目录

      /

      返回文章
      返回