Zircon U-Pb Geochronology and Geochemistry of Mesozoic Volcanic Rocks from Dasijiazi Area at Zhangwu, West Liaoning Province
-
摘要: 通过对辽西彰武县以东大四家子乡高城窝堡村义县组标准剖面中生代火山岩锆石U-Pb年代学研究表明, 其火山岩年龄为122.4±0.4Ma, 属早白垩世.对该区域23件典型火山岩样品的地球化学研究表明, 除3件流纹岩样品外, 其余样品具有高镁埃达克岩地球化学特征(SiO2=56.46%~65.14%、Al2O3=14.60%~17.19%、Mg#=50~59、Sr=501~700μg/g、Yb=1.04~1.54μg/g、Y=12.0~17.5μg/g、Eu/Eu*=0.85~0.97、Sr/Y=29~46、LaN/YbN=13~28), 同位素上具有高的初始87Sr/86Sr(0.705464~0.705812)比值, 低的εNd(122Ma)(-6.12~-12.80)值特征, 同时样品中存在具有反环带的辉石斑晶, 辉石中稀土元素含量分布存在着从核部到边部逐渐降低的趋势, 且存在负铕异常(Eu/Eu*=0.64~0.76).结合前人对彰武义县组下部火山岩的研究, 笔者倾向认为该套火山岩的成因是拆沉作用与岩浆混合作用共同作用的结果, 即拆沉作用导致软流圈地幔物质上涌加热下地壳形成的长英质岩浆, 与来自地幔由拆沉作用形成的埃达克质高镁安山岩浆混合形成.Abstract: Zircon U-Pb dating by LA-ICPMS reveals that the age of Mesozoic volcanic rocks from the Zhangwu area in west Liaoning Province is 122.4± 0.4 Ma, which belongs to Early Cretaceous. Geochemical compositions of 23 typical volcanic samples are studied. The results show that most samples except three rhyolites have similar geochemical characteristics of high-Mg adakite (SiO2 =56.46%-65.14%, Al2O3 =14. 60%--17.19%, Mg# = 50--59, Sr=501- 700μg/g, Yb= 1.04- 1.54μg/g, Y= 12.0- 17.5μg/g, Eu/Eu* = 0.85 - 0.97, Sr/Y = 29 - 46, LaN/YbN = 13 - 28). They also have high initial 87Sr/86Sr (0. 706 39-0. 706 47) and low Nd (122 Ma) values (- 6.43 to - 12.26) that are inconsistent with the original ones from slab melting. Pyroxene phenocrysts are characterized by reversed compositional zonning. Rare earth element concentrations decrease from pyroxene core to rim and also show negative Eu anomalies (Eu/Eu*= 0.64-0. 76). Combined with the previous studies on volcanic rocks from the low part of Yixian Formation in Zhangwu area, we propose that our samples from Zhangwu area resulted from delamination and magma mixing. A crustally derived felsic magma resulted from partial melting of the low crust, heated by asthenosphere upwelling and subsequently mixed with a mantle-derived high-Mg adakitie melt during magma storage or ascent to surface to form the high-Mg adakites in the Zhangwu area.
-
Key words:
- high-Mg adakites /
- magma mixing /
- delamination /
- Mesozoic volcanic rocks /
- West Liaoning Province
-
图 3 彰武地区火山岩SiO2-(K2O +Na2O) 图解(据Le Maitre et al., 1989绘制)
虚线代表碱性和亚碱性岩石系列的分界线, 引自Irvine and Baragar, 1971.●代表黄华等(2007)研究的样品; ■代表本研究的样品
Fig. 3. TAS diagram of Zhangwu volcanic rocks
图 4 彰武地区火山岩稀土元素模式分配图(a)和微量元素蛛网图(b),灰色区域为黄华等(2007)研究的样品
Fig. 4. Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider diagrams (b) of Zhangwu volcanicrocks. Gray area indicates range of samples studied by Huang et al. (2007)
图 5 彰武火山岩Y-Sr/Y(a)与MgO-SiO2(b)判别图(Defant et al., 2001,●代表黄华等(2007)研究的样品,■代表本研究的样品
Fig. 5. Y vs. Sr/Y (a) and MgO vs. SiO2(b) diagrams for Zhangwu volcanic rocks
图 7 彰武安山岩样品ZW14中单斜辉石不同环带的稀土元素分布(a) 与计算出与不同环带平衡的岩浆稀土元素分布(b).计算中核部和边部采用稀土元素在单斜辉石与长英质岩浆之间的分配系数(Barth et al., 2002), 幔部采用稀土元素在单斜辉石与玄武质岩浆之间的分配系数(Mcdade et al., 2003)
Fig. 7. Chondrite-normalized REE pattern of one rever selyzoned clinopyroxene phenocryst from ZW 14 (a) and calculated REE pattern of melts in equilibrium with different zones (b).The calculation uses REE partition coefficients between clinopyroxene and felsic melt (Barth et al., 2002) for the core and rim and those between clinopyroxene and basaltic melt (McDade et al., 2003) for the mantle
表 1 彰武流纹岩样品ZW21错石U-Pb同位素分析结果
Table 1. Zircon U-Pb LA-ICPMS data for ZW21
表 2 彰武中生代火山岩样品主量元素(%)和微量元素(μg/g) 分析结果
Table 2. The analyzed data of major elements (%) by XRF and trace elements (μg/g) by ICP-MS
表 3 彰武中生代火山岩样品同位素分析结果
Table 3. Istopic date of Sr-Nd for Zhangwu volcanic rocks
表 4 辉石反环带主量元素分析结果
Table 4. The analyzed date of major elements(%) of reversely zoned pyroxene phenocrysts by electron microprobe
表 5 ZW14中单斜辉石反环带微量元素分析结果
Table 5. The analyzed date of trace elements (μg/g) of reversely zoned clinopyroxene phenocry st from ZW14 by LA-ICPMS
-
[1] Atherton, M.P., Petford, N., 1993. Generation of sodiumrich magmas from newly underplated basaltic crust. Nature, 4: 596-600. [2] Barth, M.G., Foley, S.F., Horn, I., 2002. Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research, 113: 323-340. doi: 10.1016/S0301-9268(01)00216-9 [3] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and geochemistry of Camiguin Island, so uther n Philippine s: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134: 33 -51. doi: 10.1007/s004100050467 [4] Chen, Y.X., Chen, W.J., Zhou, X.H., et al., 1997. Mesozoic volcanic rocks in weste rn Liaoning Province and surrounding a rea-geochronology, geochemistry and tectonic environment. Seis. Publ. House, Beijing, 1-279 (in Chinese). [5] Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0 [6] Defant, M.J., Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. EOS (Transactions, American Geophysical Union), 82: 65 -69. [7] Deng, J.F., Su, S., Niu, Y., et al., 2007. A possible model for the litho spheric thinning of North China craton: Evidence from the Yansha nian (Jura-Cre taceous) magmatism and tectonism. Lithos, 96: 22-35. doi: 10.1016/j.lithos.2006.09.009 [8] Gao, S., Rudnick, R., Yuan, H.L., et al., 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892 -897. doi: 10.1038/nature03162 [9] Griffin, W.L., Zhang, A.D., O'Reilly, S.Y., 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower, M.F.J., Chung, S.L., Lo, C.H., et al., eds., Mantle Washington DC, Dynamics and Plate Interactions in East Asia. American Geophysical Union, 107-126. [10] Guo, F., Nakamuru, E., Fan, W.M., et al., 2007. Generation of Palaeo cene adakitic andesites by magma mixing, Yanji area, NE China. Joural of Petrology, 80: 1-32. [11] Huang, H., Gao, S., Hu, Z.C., et al., 2007. Geochemistry of the high-Mg andesites at Zhang wu, western Liaoning: Implication for delamination of newly formed lower crust. Science in China (Series D), 37 (10): 1287-1300. [12] Irvine, A.J., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canada Journal of Earth Sciences, 8: 523-548. doi: 10.1139/e71-055 [13] Kay, R.W., K ey, S.M., 1991. Creation and destruction of lower continental crust. Geologiche Rundschau, 80: 259 -278. doi: 10.1007/BF01829365 [14] Kawabata, H., Shuto, K., 2005. Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: Implications for Archean TTG formation. Journal of Volcanology and Geothermal Research, 140: 241-271. doi: 10.1016/j.jvolgeores.2004.08.013 [15] Le Maitre, R.W., Bateman, P., Dudek, A., et al., 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford. [16] Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planetary Science Letters, 39: 349-357. doi: 10.1016/0012-821X(78)90021-3 [17] McDade, P., Blundy, J.D., Wood, B.J., 2003. Trace element partitioning on the Tinaquillo lherzolite solidus at 1.5 GPa. Physics of the Earth and Planetary Interriors, 139: 129-147. doi: 10.1016/S0031-9201(03)00149-3 [18] Menzies, A., Fan, W.M., Zhang, M., 1993. Paleozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Ko rean craton, China. In: Prichard, H. M., Alabaster, H.M., Harris, T., et al., eds., Magmatic Processes and P late Tectonics. Geol. Soc. London, London, 73 -81. [19] Menzies, M., Xu, Y.G., Zhang, H.F., et al., 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China craton. Lithos, 96: 1-21. doi: 10.1016/j.lithos.2006.09.008 [20] Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underpalted basaltics crust: The Cordillera Blanca batholith, Peru. Journal of Petrology, 37: 1491-1521. doi: 10.1093/petrology/37.6.1491 [21] Petford, N., Kerry, G., 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters, 193(3-4): 483 -499. doi: 10.1016/S0012-821X(01)00481-2 [22] Rapp, R.P., Long, X., Shimizu, N., 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica, 18: 293 -302. [23] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160: 335 -356. doi: 10.1016/S0009-2541(99)00106-0 [24] Rapp, R.P., Watson, E.B., 1995. Dehy dration melting of metabasalt at 8 -32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891-931. doi: 10.1093/petrology/36.4.891 [25] Sterger, R.H., Jäger, E., 1977. Subcommission on geochronology: Convention on the use of decay constrains in geochronology and cosmoch ronology. Earth Planetary Science Letters, 36: 359 -362. doi: 10.1016/0012-821X(77)90060-7 [26] Stern, R.A., Hanson, G.N., 1991. A rchean high-Mg granodiorite: A derivative of light rare earth element enriched monzodiorite of mantle origin. Journal of Petrology, 32: 201 -238. doi: 10.1093/petrology/32.1.201 [27] Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology, 35: 351-354. [28] Wilde, S.A., Zhou, X.H., Nemchin, A.A., et al., 2003. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31: 817-820. [29] Wolf, M.B., Wyllie, P.J., 1994. Dehydration-melting of amphibolite at 10 kbar: Effects of temperature and time. Contributions to Mineralogy and Petrology, 115: 369-38. doi: 10.1007/BF00320972 [30] Xiao, L., Clemens, J.D., 2006. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos, doi: 10.1016/j.lithos.2006.09.002. [31] Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233: 103-119. doi: 10.1016/j.epsl.2005.02.019 [32] Xu, W.L., Gao, S., Wang, Q.H., et al., 2006. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 34: 721 -724. [33] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002a. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 [34] Xu, W.L., Wang, D.Y., Liu, X.C., et al., 2002b. Discovery of eclogite inclusion and its geological significance in Early Jurassic intrusive complex in Xuzhou-northern Anhui, eastern China. Chinese Science Bulletin, 47: 1212 -1216. [35] Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2006. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences, 27: 230 -240. doi: 10.1016/j.jseaes.2005.03.005 [36] Xu, Y.G., 2001. T hermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26: 747-757. doi: 10.1016/S1464-1895(01)00124-7 [37] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. A ccurate UPb age and trace element determinations of zircon by laser ablation inductively coupled plasmamass spectrometry. Geostandard and Geoanalytical Research, 28: 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [38] Zhai, M.G., Fan, Q., Zhang, H.F., et al., 2007. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 96: 36 -54. doi: 10.1016/j.lithos.2006.09.016 [39] Zhang, H.F., 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth and Planetary Science Letters, 237: 768-780. doi: 10.1016/j.epsl.2005.06.041 [40] Zhang, H.F., Sun, M., Zhou, X.H., et al., 2003. Secular evolution of the lithosphere beneath the eastern North China craton: Evidence from Mesozoic basalts and highMg andesites. Geochimica et Cosmochimica Acta, 67: 4373 -4387. doi: 10.1016/S0016-7037(03)00377-6 [41] Zhang, Q., Jin, W.J., Wang, Y.L., et al., 2006. A model of delamination of continental lower crust. Acta Petrologica Sinica, 22 (2): 265 -276 (in Chinese with English abstract). [42] Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001. An east China plateau in mid-late Yanshanian period: Im plication from adakites. Scientia Geologica Sinica, 36(2): 248-255 (in Chinese with English absrtact). [43] Zhang, Q., Wang, Y., Liu, H.T., et al., 2003. On the spacetime distribution and geodynamic environments of adakites in China annex: Controversies over differing opinions for adakites in China. Earth Science Frontiers, 10 (4): 385-400 (in Chinese with English absrtact). [44] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248-272. doi: 10.1016/j.lithos.2006.03.067 [45] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., 2006. Mineral chemistry of garnet peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath Eastern China. Journal of Petrology, 47: 2233 -2256. doi: 10.1093/petrology/egl042 [46] Zheng, J.P., Lu, F.X., Yu, C.M., et al., 2003. Mantle replacement: Evidence from comparison in trace elements between peridotite and diopside from refractory and fertile mantle, North China. Earth Science -Journal of China University of Geosciences, 28 (3): 235 -240 (in Chinese with English absrtact). [47] Zhou, X.H., Zhang, G.H., Yang, J.H., et al., 2001. Sr-NdPb isotope mapping of Late Mesozoic volcanic rocks across northern margin of North China craton and implications to geody namic processes. Geochimica, 30(1): 10-23 (in Chinese with English absrtact). [48] Zhou, X.H., Zhang, H.F., 2006. Highly chemical heterogeneity of subcontinental lithosphere mantle beneath North China and its majort ransformation. Earth Science-Journal of China University of Geosciences, 31 (1): 8 -13 (in Chinese with English absrtact). [49] 陈义贤, 陈文寄, 周新华, 等, 1997. 辽西及邻区中生代火山岩年代学地球化学和构造背景. 北京: 地震出版社, 1-279. [50] 黄华, 高山, 胡兆初, 等, 2007. 辽西彰武地区中生代高镁火山岩地球化学及其对新生下地壳拆沉作用的指示. 中国科学(D辑), 37(10): 1287-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200710004.htm [51] 张旗, 金惟俊, 王元龙, 等, 2006. 大陆下地壳拆沉模式初探. 岩石学报, 22(2): 265-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611001.htm [52] 张旗, 钱青, 王二七, 等, 2001. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 36(2): 248 -255. doi: 10.3321/j.issn:0563-5020.2001.02.014 [53] 张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其形成背景附: 《国内关于埃达克岩的争论》. 地学前缘, 10(4): 385 -400. doi: 10.3321/j.issn:1005-2321.2003.04.007 [54] 郑建平, 路凤香, 余淳梅, 等, 2003. 地幔置换作用: 华北两类橄榄岩及其透辉石微量元素对比证据. 地球科学——中国地质大学学报, 28(3): 235-240. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200303000.htm [55] 周新华, 张国辉, 杨进辉, 等, 2001. 华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义. 地球化学, 30(1): 10 -23. doi: 10.3321/j.issn:0379-1726.2001.01.003 [56] 周新华, 张宏福, 2006. 中生代华北岩石圈地幔高度化学不均一性与大陆岩石圈转型. 地球科学——中国地质大学学报, 31(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601002.htm