• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    原生透镜状砂岩油藏成藏过程——维数值模拟

    解国军 金之钧

    解国军, 金之钧, 2008. 原生透镜状砂岩油藏成藏过程——维数值模拟. 地球科学, 33(1): 97-106.
    引用本文: 解国军, 金之钧, 2008. 原生透镜状砂岩油藏成藏过程——维数值模拟. 地球科学, 33(1): 97-106.
    JIE Guo-jun, JIN Zhi-jun, 2008. One Dimensional Numerical Simulation of Oil-Trapping Process of Original Lentoid Sand Reservoir. Earth Science, 33(1): 97-106.
    Citation: JIE Guo-jun, JIN Zhi-jun, 2008. One Dimensional Numerical Simulation of Oil-Trapping Process of Original Lentoid Sand Reservoir. Earth Science, 33(1): 97-106.

    原生透镜状砂岩油藏成藏过程——维数值模拟

    基金项目: 胜利油田博士后研究基金
    详细信息
      作者简介:

      解国军(1971-), 副教授, 主要研究方向为油气成藏机理和油气资源评价. E-mail: linadaxie@sohu.com

    • 中图分类号: P618

    One Dimensional Numerical Simulation of Oil-Trapping Process of Original Lentoid Sand Reservoir

    • 摘要: 为了了解原生透镜状砂岩油藏的成藏过程和控制因素, 基于变形多孔介质两相流动的基本原理, 综合考虑地层在沉降过程中温度和压力的变化、砂岩体和围岩物性的变化、石油的生成以及岩石中孔隙流体物性变化等情况, 应用数值方法模拟这类油藏在一维条件下成藏的整个过程.通过成藏过程模拟和分析, 认为超压是推动流体整体运移的动力, 而对处于生油围岩中的原生透镜状砂岩油藏, 围岩和砂体间形成的毛管压力差异才是驱动石油在原生透镜状砂岩油藏中聚集的根本动力.在这类砂岩油藏成藏的过程中, 砂体的油相压力要低于与其相邻的围岩中的油相压力, 使得砂体成为石油的一个相对的低势区.原生透镜状砂岩油藏的成藏是由力平衡和物质平衡两种基本作用控制的成藏过程, 石油生成和供应量以及砂体和围岩的油相势差决定了这类油藏的含油性.

       

    • 图  1  透镜状砂岩油藏一维地质模型

      Fig.  1.  One dimensional geological nxxlel of lentoid sand reservoir

      图  2  目的层段含油饱和度(a)和毛管压力(b) 随时间变化

      Fig.  2.  Oil saturation varied (a) and capillary pressure varied (b) with time in the simulative section

      图  3  目的层段油势梯度随时间变化

      Fig.  3.  Oil potential grads varied with time in the sirrndative section

      图  4  牛庄洼陷原生岩性油藏含油性影响因素统计分析

      a.油藏储层孔隙度与含油饱和度关系;b.油藏异常压力系数与油藏顶部储层毛管压力关系

      Fig.  4.  Statistical analysis of the influential factors on the oil-bearing characters of original lentoid sand reservoirs in Niuzhuang sag

      表  1  成藏模拟中用到的各参数

      Table  1.   Parameters used in the simulation

    • [1] Brooks, R. H., Corey, A. T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92(2): 61-88. doi: 10.1061/JRCEA4.0000425
      [2] Chen, Z.M., Zhang, Y.F., Han, Y.X., et al., 1998. A modelling experiment and mechanism analysis of oil accumulation in pod-like sand body. Petroleum Geology & Experiment, 20(2): 166-170(in Chinese with English abstract).
      [3] Danesh, A., 2000. PVT and phase behaviour of petroleum reservoir fluids. Translated by Shen, P.P., Han, D. . Petroleum Industry Press, Beijing, 293(in Chinese).
      [4] Dullien, F.A.L., 2001. Porous media fluid transport and pore structure. Translated by Fan, Y.P., Zhao, D.W. . Petroleum Industry Press, Beijing, 332(in Chinese).
      [5] Düppenbecker, S.J., Dohmen, L., Welte, D.H., 1991. Numerical modeling of petroleum expulsion in two areas of the Lower Saxony basin, northern Germany. In: England, W.A., Fleet, A.J., eds., Petroleum migration. Geological Society Special Publication, 59: 47-64.
      [6] Hermanrud, C., Wensass, L., Teige, G.M.G., et al., 1998. Shale porosities from well logs on Haltenbanken(offshore mid-Norway) show no influence of overpressuring. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal pressures in hydrocarbon environments. AAPG Memoir, 70: 65-85.
      [7] Li, P.L., Pang, X.Q., Chen, D.X., et al., 2004a. Oil trapping mechanism and model of sand lens reservoir of Jiyang depression. Science in China (Ser. D), 34(Suppl. 1): 143-151(in Chinese).
      [8] Li, P.L., Zhang, S.W., Song, G.Q., et al., 2004b. Forming mechanism of subtle oil pools in fault basins—Taking the Jiyang depression of the Bohaiwan basin as an example. Petroleum Geology & Experiment, 26(1): 3-10 (in Chinese with English abstract).
      [9] Luo, X.R., 2001. Dynamic background and conditions for petroleum primary migration. Acta Petrolei Sinica, 22 (6): 24-29(in Chinese with English abstract).
      [10] Luo, X.R., Vasseur, G., 1996. Geopressuring mechanism of organic matter cracking: Numerical modeling. AAPG Bulletin, 80(6): 856-874. https://pubs.geoscienceworld.org/aapgbull/article-abstract/80/6/856/39321/Geopressuring-Mechanism-of-Organic-Matter-Cracking
      [11] Mann, U., Hantschel, T., Schaefer, R.G., et al., 1997. Petroleum migration: Mechanisms, pathways, efficiencies and numerical simulations. In: Welte, D.H., Horsfield, B., Baker, D.R. eds., Petroleum and basin evolution. Springer-Verlag, Berlin Heidelberg, 403-520.
      [12] Mudford, B.S., Gradstein, F.M., Katsube, T.J., et al., 1991. Modelling 1D compaction-driven flow in sedimentary basins: A comparison of the Scotian shelf, North Sea and Gulf Coast. In: England, W.A., Fleet, A.J., eds., Petroleum migration. Geological Society Special Publication, 59: 65-85.
      [13] Okui, A., Siebert, R.M., Matsubayashi, H., 1998. Simulation of oil expulsion by 1-D and 2-D basin modelling—Saturation threshold and relative permeabilities of source rocks. In: Düppenbecker, S.J., Iliffe, J.E., eds., Basin modelling: Practice and progress. Geological Society Special Publications, 141: 45-72.
      [14] Palciauskas, V.V., 1991. Primary migration of petroleum. In: Merrill, R.K. ed., Source and migration processes and evaluation techniques. AAPG Treatise of Petroleum Geology, Tulas, OK, 13-22.
      [15] Pang, X.Q., Chen, D.X., Li, P.L., et al., 2003. Accumulation thresholds of sand lens and controlling mechanism for oil and gas distribution. Acta Petrolei Sinica, 24 (3): 38-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200303007.htm
      [16] Schenk, H.J., Horsfield, B., Krooss, B., et al., 1997. Kinetics of petroleum formation and cracking. In: Welte, D. H., Horsfield, B., Baker, D.R., eds., Petroleum and basin evolution. Springer-Verlag, Berlin Heidelberg, 233-269.
      [17] Shi, G.R., 1999. Petroleum basin modeling method. Petroleum Industry Press, Beijing, 215(in Chinese).
      [18] Slavin, V.I., Smirnova, E.M., 1998. Abnormally high formation pressures: Origin, prediction, hydrocarbon field development, and ecological problems. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal pressures in hydrocarbon environments. AAPG Memoir, 70: 105-114.
      [19] Sui, F.G., 2005. Quantitative study on key control factors for reservoir formation in turbidity sand. Acta Petrolei Sinica, 26(1): 55-59(in Chinese with English abstract).
      [20] Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence. Springer-Verlag, Berlin Heidelberg, New York, Tokyo, 699.
      [21] Tokunaga, T., Hosoya, S., Tooaka, H., et al., 1998. An estimation of the intrinsic permeability of argillaceous rocks and the effects on long-term fluid migration. In: Düppenbecker, S.J., Iliffe, J.E., eds., Basin modelling: Practice and progress. Geological Society Special Publications, 141: 83-94.
      [22] Ungerer, P., Besis, F., Chenet, P.Y., et al., 1984. Geological and geochemical models in oil exploration: Principles and practical examples. In: Demaison, G., Murris, R.J., eds., Petroleum geochemistry and basin evaluation. AAPG Memoir, 35: 53-57.
      [23] Ungerer, P.J., Burrus, B., Dollgez, P.Y., et al., 1990. Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. AAPG Bulletin, 74(3): 309-335. https://pubmed.ncbi.nlm.nih.gov/19580590/
      [24] Wang, N., Chen, B.N., Zhai, J.F., 2001. Reservoir forming index for the lithological reservoir. Petroleum Exploration and Development, 27(6): 4-5, 8(in Chinese with English abstract).
      [25] Zhang, J., Pang, X.Q., Jiang, Z.X., et al., 2006. Main accumulation controlling factors and forecast of sand lens reservoir, Dongying depression, China. Earth Science —Journalof China University of Geosciences, 31(2): 250-256(in Chinese with English abstract). https://www.researchgate.net/publication/286902030_Main_accumulation_controlling_factors_and_forecast_of_sand_lens_reservoir_Dongying_depression_China
      [26] 陈章明, 张云峰, 韩有信, 等, 1998. 凸镜状砂体聚油模拟实验及其机理分析. 石油实验地质, 20(2): 166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199802013.htm
      [27] Danesh, A., 2000. 油藏流体的PVT与相态. 沈平平, 韩冬, 译. 北京: 石油工业出版社, 293.
      [28] Dullien, F.A.L., 2001. 现代渗流物理学. 范玉平, 赵东伟, 译. 北京: 石油工业出版社, 332.
      [29] 李丕龙, 庞雄奇, 陈冬霞, 等, 2004a. 济阳坳陷砂岩透镜体油藏成因机理与模式. 中国科学(D辑), 34(Suppl. 1): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1016.htm
      [30] 李丕龙, 张善文, 宋国奇, 等, 2004b. 断陷盆地隐蔽油气藏形成机制-以渤海湾盆地济阳坳陷为例. 石油实验地质, 26(1): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200401001.htm
      [31] 罗晓容, 2001. 油气初次运移的动力学背景与条件. 石油学报, 22(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106004.htm
      [32] 庞雄奇, 陈冬霞, 李丕龙, 等, 2003. 砂岩透镜体成藏门限及控油气作用机理. 石油学报, 24(3): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200303007.htm
      [33] 石广仁, 1999. 油气盆地数值模拟方法. 北京: 石油工业出版社, 215.
      [34] 隋风贵, 2005. 浊积砂体油气成藏主控因素的定量研究. 石油学报, 26(1): 55-59. doi: 10.3321/j.issn:0253-2697.2005.01.011
      [35] 王宁, 陈宝宁, 翟建飞, 2001. 岩性油气藏形成的成藏指数. 石油勘探与开发, 27(6): 4-5, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200006001.htm
      [36] 张俊, 庞雄奇, 姜振学, 等, 2006. 东营凹陷砂岩透镜体油气成藏机理及有利区预测. 地球科学—中国地质大学学报, 31(2): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602015.htm
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  3499
    • HTML全文浏览量:  97
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-02-16
    • 刊出日期:  2008-02-25

    目录

      /

      返回文章
      返回