Mineral Component, Texture and Forming Conditions of Hydrothermal Chimney on the East Pacific Rise 9°-10°N
-
摘要: 为研究东太平洋海隆9°~10°N热液活动特征, 采用成因矿物学方法, 通过矿相显微镜、扫描电镜、X射线衍射分析以及电子探针等手段, 对烟囱体矿物成分、结构和地球化学特征进行了研究.该区烟囱体硫化物矿物有3种矿物组合: (1) 硬石膏+白铁矿+黄铁矿; (2) 黄铁矿+闪锌矿+黄铜矿; (3) 黄铜矿+斑铜矿+蓝辉铜矿+铜蓝.成矿热液流体温度经历了低-高-低的变化, 最高温度可达到400℃以上.该热液烟囱为典型的“黑烟囱”类型, 早期硬石膏沉淀形成烟囱体的框架, 后期的金属硫化物在烟囱体内表面沉淀, 由烟囱壁向内形成了硬石膏-黄铁矿、多金属硫化物和黄铜矿及次生铜矿物的矿物分带.Abstract: To characterize the hydrothermal processes of East Pacific rise at 9°-10°N, sulfide mineral compositions, textural and geochemical features of chimney ores were studied using ore microscope, scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques.Resultsshow that there are three mineral assemblages for the hydrothermal chimney ores, namely: (1) anhydrite + marcasite + pyrite, (2) pyrite + sphalerite + chalcopyrite, and (3) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.
-
Key words:
- hydrothermal processes /
- black smoker /
- mineral assemblage /
- exsolution texture /
- ore fluid
-
图 1 东太平洋海隆9°~10°N热液烟囱采样位置图(据Haymon et al., 1991)
Fig. 1. Location map of hydrothermal chimney at EPR 9°-10°N
表 1 东太平洋海隆9°~10°N热液烟囱矿物电子探针分析结果(%)
Table 1. Result of electron microprobe analyses of hydrothermal chimney minerals at EPR 9°-10°N
-
[1] Bortnikov, N. S., Genkin, A. D., Dobrovol, M. G., et al., 1991. The nature of chalicopyrite inclusions in sphalerite: Exsolution, coprecipitation, or "disease". Econ. Geol. , 86: 1070-1082. doi: 10.2113/gsecongeo.86.5.1070 [2] Carbotte, S. M., Macdonald, K. C., 1992. East Pacific rise 8°N-10°30′N: Evolution of ridge segments and discontinuities from SeaMARC II and three-dimensional magnetic studies. J. Geophys. Res. , 97: 6959-6982. doi: 10.1029/91JB03065 [3] Christeson, G. L., Kent, G. M., Purdy, G. M., et al., 1996. Extrusive thickness variability at the East Pacific rise, 9°-10°N: Constraints from seismic techniques. J. Geophys. Res. , 101: 2859-2873. doi: 10.1029/95JB03212 [4] Christeson, G. L., Purdy, G. M., Fryer, G. L., 1992. Structure of young oceanic crust at the East Pacific rise near 9°30′N. Geophys. Res. Lett. , 19: 1045-1048. doi: 10.1029/91GL00971 [5] Chu, F. Y., Chen, L. R., 1995. Mineralogy of hydrothermal sulfide at mid-Atlantic ridge. Marine Geology & Quaternary Geology, 15 (2): 73-83 (in Chinese with English abstract). https://pubs.geoscienceworld.org/canmin/article-abstract/46/3/545/126881/MINERALOGY-OF-MASSIVE-SULFIDES-FROM-THE-ASHADZE [6] Deng, J., Wang, J. G., Wei, Y. G., et al., 2007. Ores and gold-bearing characteristics in Xiejiagou gold deposit, Shandong Province. Earth Science—Journal of China University of Geosciences, 32 (3): 373-380 (in Chinese with English abstract). [7] Feely, R. A., Gendron, J. F., Baker, E. T., et al., 1994. Hydrothermal plumes along the East Pacific rise, 8°40′-11°50′N: Particle distribution and composition. Earth Planet. Sci. Lett. , 128: 19-36. doi: 10.1016/0012-821X(94)90023-X [8] Fouquet, Y., Stackelberg, U. V., Charlou, J. L., et al., 1993. Metallogenesis in back-arc environments: The Lau basin example. Econ. Geol. , 88: 2154-2181. doi: 10.2113/gsecongeo.88.8.2154 [9] Gregg, T. K. P., Fornari, D. J., Perfit, M. R., et al., 1996. Rapid emplacement of a mid-ocean ridge lava flow on the East Pacific rise at 9°46′-9°51′N. Earth Planet. Sci. Lett. , 144 (3-4): E1-E7. doi: 10.1016/S0012-821X(96)00179-3 [10] Haymon, R., Fornari, D., Edwards, M., et al., 1991. Hydrothermal vent distribution along the East Pacific rise crest (9° 09′-54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridge. Earth Planet. Sci. Lett. , 104: 513-534. doi: 10.1016/0012-821X(91)90226-8 [11] Haymon, R. M., 1983. The growth history of hydrothermal black smoker chimneys. Nature, 301: 695-696. doi: 10.1038/301695a0 [12] Haymon, R. M., Fornari, D. J., Lilley, M. D., et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific rise crest at 9°45′-9°52′N: Direct submersible observation of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters, 119: 85-101. doi: 10.1016/0012-821X(93)90008-W [13] Heather, L. H., Anna, M., Robert, M. J., et al., 2004. Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific rise, 9°50′N). Deep-Sea Research I, 51: 225-234. doi: 10.1016/j.dsr.2003.10.008 [14] Herzig, P. M., Hannington, M. D., Fouquet, Y., et al., 1993. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the southwest Pacific. Econ. Geol. , 88: 2182-2200. doi: 10.2113/gsecongeo.88.8.2182 [15] Hou, Z. Q., Qu, X. M., Xu, M. J., et al., 2001. The Gacun VHMS deposit in Sichuan Province: From field observation to genetic model. Mineral Deposits, 20 (1): 44-56 (in Chinese with English abstract). [16] Hu, W. X., Zhang, W. L., Hu, S. X., et al., 2000. Study of chalcopyrite disease texture resulted from replacement of chalcopyrite by sphalerite. Acta Mineralogica Sinica, 20 (4): 331-336 (in Chinese with English abstract). [17] Janecky, D. R., Seyfried, W. E., 1984. Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and sea water. Geochim. Cosmochim. Acta, 48: 2723-2738. doi: 10.1016/0016-7037(84)90319-3 [18] Kojima, S., Sugaki, A., 1985. Phase relationship in the Cu-Fe-Zn-S system between 500 ℃ and 300 ℃ under hydrothermal condition. Econ. Geol. , 80: 158-171. doi: 10.2113/gsecongeo.80.1.158 [19] Kurras, G. J., Fornari, D. J., Edwards, M. H., et al., 2000. Volcanic morphology of the East Pacific rise crest 9° 49′-9°52′N: Implications for volcanic emplacement processes at fast-spreading mid-ocean ridges. Marine Geophy. Res. , 21 (1): 23-41. [20] Langmuir, C., Humphris, S., Fornari, D., et al., 1997. Hydrothermal vents near a mantle hotspot: The lucky strike vent field at 37°N on the mid-Atlantic ridge. Earth Planet. Sci. Lett. , 148: 69-91. doi: 10.1016/S0012-821X(97)00027-7 [21] Li, J. L., Wang, S., 1990. Investigation of a new exsolved Cu-Fe-S phase in abnormal sphalerite. Acta Geological Sinica, 3: 201-215 (in Chinese with English abstract). [22] Lupton, J. E., Lilley, M. D., Olson, E., et al., 1991. Gas chemistry of vent fluids from 9°-10°N on the East Pacific rise. EOS Trans. Am. Geophys. , 72: 481. [23] Lusk, J., Calder, B. O. E., 2004. The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 ℃and 535 ℃. Chemical Geology, 203: 319-345. doi: 10.1016/j.chemgeo.2003.10.011 [24] Münch, U., Blum, N., Halbach, P., 1999. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, central Indian ridge. Chemical Geology, 155: 29-44. doi: 10.1016/S0009-2541(98)00139-9 [25] Oosting, S. E., Von Damm, K. L., 1996. Bromide/chloride fractionation in seafloor hydrothermal fluids from 9°-10°N East Pacific rise. Earth Planet. Sci. Lett. , 144: 133-145. doi: 10.1016/0012-821X(96)00149-5 [26] Shank, T. M., Fornari, D. J., Von Damm, K. L., et al., 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50′N, East Pacific rise). Deep-sea Research II, 45: 465-515. doi: 10.1016/S0967-0645(97)00089-1 [27] Shanks, W. C., Bohlke, J. K., Seal, R. R., et al., 1991. Stable isotope studies of vent fluids, 9°-10°N East Pacific rise: Water-rock interaction and phase separation. EOS Trans. Am. Geophys. , 72: 481. [28] Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res. , 100 (12): 527-555. doi: 10.1029/95JB00610 [29] Wiggins, L. B., Craig, J. R., 1980. Reconnaissance of the Cu-Fe-Zn-S system: Sphalerite phase relationship. Econ. Geol. , 75: 742-751. doi: 10.2113/gsecongeo.75.5.742 [30] Wu, S. Y., Gao, A. G., Wang, K. Y., et al., 2000. World seafloor hydrothermal sulfide resources. China Ocean Press, Beijing, 151 (in Chinese). [31] Yund, R. A., Kullerud, G., 1996. Thermal stability of assemblages in the Cu-Fe-S system. Jour. Petro. , 7: 454-488. https://academic.oup.com/petrology/article/7/3/454/1403151 [32] 初凤友, 陈丽蓉, 1995. 大西洋中脊热液硫化物的矿物学研究. 海洋地质与第四纪, 15 (2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ502.008.htm [33] 邓军, 王建国, 韦延光, 等, 2007. 山东谢家沟金矿床矿石与金矿物特征. 地球科学——中国地质大学学报, 32 (3): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703009.htm [34] 候增谦, 曲晓明, 徐明基, 等, 2001. 四川呷村VHMS矿床: 从野外观察到成矿模型. 矿床地质, 20 (1): 44-56. doi: 10.3969/j.issn.0258-7106.2001.01.006 [35] 胡文瑄, 张文兰, 胡受奚, 等, 2000. 闪锌矿交代黄铜矿形成的"黄铜矿病毒"结构. 矿物学报, 20 (4): 331-336. doi: 10.3321/j.issn:1000-4734.2000.04.002 [36] 李九玲, 汪苏, 1990. "异常闪锌矿"中一种铜铁硫新出溶相矿物的研究. 地质学报, 3: 201-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199003002.htm [37] 吴世迎, 高爱国, 王揆洋, 等, 2000. 世界海底热液硫化物资源. 北京: 海洋出版社, 151.