• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新近纪南海深层水的增氧与分层

    李前裕 赵泉鸿 钟广法 翦知湣 田军 成鑫荣 陈木宏

    李前裕, 赵泉鸿, 钟广法, 翦知湣, 田军, 成鑫荣, 陈木宏, 2008. 新近纪南海深层水的增氧与分层. 地球科学, 33(1): 1-11.
    引用本文: 李前裕, 赵泉鸿, 钟广法, 翦知湣, 田军, 成鑫荣, 陈木宏, 2008. 新近纪南海深层水的增氧与分层. 地球科学, 33(1): 1-11.
    LI Qian-yu, ZHAO Quan-hong, ZHONG Guang-fa, JIAN Zhi-min, TIAN Jun, CHENG Xin-rong, CHEN Mu-hong, 2008. Deep Water Ventilation and Stratification in the Neogene South China Sea. Earth Science, 33(1): 1-11.
    Citation: LI Qian-yu, ZHAO Quan-hong, ZHONG Guang-fa, JIAN Zhi-min, TIAN Jun, CHENG Xin-rong, CHEN Mu-hong, 2008. Deep Water Ventilation and Stratification in the Neogene South China Sea. Earth Science, 33(1): 1-11.

    新近纪南海深层水的增氧与分层

    基金项目: 

    国家自然科学基金项目 40576031

    国家自然科学基金项目 40476030

    国家自然科学基金项目 40631007

    国家重点基础研究发展计划“973项目” 2007CB815902

    详细信息
      作者简介:

      李前裕(1956-), 男, 教授, 澳大利亚籍, 主要从事海洋地层古环境的科研与教学工作.E-mail: qli01@mail.tongji.edu.cn, qli01@mail.tongji.edu.cn

    • 中图分类号: P736.22

    Deep Water Ventilation and Stratification in the Neogene South China Sea

    • 摘要: 综合南海ODP1148站、1146站和1143站沉积物物性、底栖有孔虫、同位素等资料, 探讨早中新世以来南海深层水的演化特征.结果表明, 在21~17Ma、15~10Ma和1~5Ma3个时间段分别对应3个富含红褐色粘土的岩性单元, 其红色参数(a*) 增高指示南海深层水中溶解氧含量的增加.对比发现, 前两阶段的深层水增氧与南极底层水和北大西洋组合水增强有关, 说明10Ma前南海与外地的底层水基本是相互连通的.10Ma以后, 南海深层水溶解氧降低, 同时分别处于下深层水的1148站和上深层水的1146站之间的CaCO3含量变化加大, 喜氧底栖有孔虫减少, 底栖δ13C在10Ma大幅度减轻, 说明南海当时的深层水受大洋深层水的控制减弱.推测主要是南海海盆自16~15Ma停止扩张以后, 南海逐渐关闭引起本地深层水开始形成的缘故.从6Ma左右开始出现大量的太平洋底层水和深层水的底栖有孔虫标志种, 1148站和1146站在5~3Ma期间的CaCO3含量之差达到40%, 标志南海深层水最大分异期.除了全球气候变冷、北半球结冰引起太平洋深层水扩张的影响之外, 南海海盆由于更强烈向东俯冲而进一步下沉也可能是原因之一.3Ma以来南海深层水演化进入现代模式, 两站之间的CaCO3含量之差稳定在10%左右, 厌氧底栖种丰度增加.太平洋底层水和深层水的标志种相继在1.2Ma和0.9Ma大量减少, 底栖δ13C也同时大幅度变轻到新近纪的最低值, 表明太平洋底层水的影响基本消失, 太平洋深层水的影响也大大减弱.因此, 标准现代模式的南海深层水, 推测主要由于“中更新世气候转型”时期巴士海峡下面的海槛抬升到接近目前~2600m的深度时, 才开始形成.

       

    • 图  1  南海ODP 1143、1146、1148站位图

      Fig.  1.  Location map of ODP Sites 1143, 1146 and 1148 in the South China Sea

      图  2  南海和邻近海区水流示意图(a) (据Chen et al., 2006修改)和南海与开放型菲律宾海不同深度的实测溶解氧剖面(b) (Li and Qu, 2006)

      Fig.  2.  Schematic profile showing the major flow pattern in the South China Sea and neighboring sea basins (a) and measured profile of dissolved oxygen levels at different Philippine and SCS sites (b)

      图  3  ODP1148站(a)和1146站(b) 新近纪沉积物物性和测井曲线(据Wang et al., 2000修改)

      Fig.  3.  Physical property and logging curves of Neogene sediments at ODP Sites 1148 (a) and 1146 (b)

      图  4  1148站代表性底栖有孔虫的相对丰度(据Zhao et al., 2007)

      Fig.  4.  Relative abundance of selected benthic foraminifera from Site 1148

      图  5  1148站底栖(B) 氧、碳同位素, 浮游(P) 氧、碳同位素, 底栖和浮游同位素差值与全球组合记录相对比

      赵泉鸿等(2001a, 2001b)和翦知湣等(2001); 全球组合记录据Zachos et al. (2001); 箭头指示1148站底栖碳同位素的主要负位移事件; 直线棒表示Δδ13C (P-B) 的主要变化趋势; MMCT代表“中中新世气候转型”

      Fig.  5.  Comparison between the global composite benthic isotopic records and those of benthic and planktonic records and their differences from Site 1148

      图  6  新近纪南海深层水演化主要阶段和全球深层水增强阶段相对比

      ODP1148、1146、1143站有关资料见图 3; 浮游有孔虫碎壳率据陈晓良等(2002); 北方组合水(NCW)和南极底层水(AABW) 增强主要据Ramsay et al. (1994)Hodell and Venz-Curtis (2006); 1148站溶解事件D1~D5据Li et al. (2006)

    • [1] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98: 6299-6328. doi: 10.1029/92JB02280
      [2] Broecker, W.S., 1992. The Glacial Word according to Wally. Lamont-Doherty Geological Observatory, Columbia University, 228p+ Appendices.
      [3] Broecker, W.S., Patzert, W.C., Toggweiler, J.R., et al., 1986. Hydrography, chemistry, and radioisotopes in the Southeast Asian basins. Journal of Geophysical Research, 91(14): 345-354. doi: 10.1029/JC091iC12p14345
      [4] Chao, S.Y., Shaw, P.T., Wu, S.Y., 1996. Deep water ventilation in the South China Sea. Deep-Sea Research I, 43 (4): 445-467. doi: 10.1016/0967-0637(96)00025-8
      [5] Chen, C.T.A., Hou, W.P., Gamo, T., et al., 2006. Carbonate-related parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Marine Chemistry, 99: 151-161. doi: 10.1016/j.marchem.2005.05.008
      [6] Chen, C.T.A., Wang, S.L., Wang, B.J., et al., 2001. Nutrient budgets from the South China Sea basin. Marine Chemistry, 75: 281-300. doi: 10.1016/S0304-4203(01)00041-X
      [7] Chen, X.L., Zhao, Q.H., Jian, Z.M., 2002. Carbonate content changes since the Miocene and paleoenvironmental implications, ODP Site 1148, northern South China Sea. Marine Geology & Quaternary Geology, 22: 69-74(in Chinese with English abstract).
      [8] Douglas, R., Woodruff, F., 1981. Deep sea benthic foraminifera. In: Emiliani, C., ed., The Sea 7: The ocean lithosphere. J. Wiley & Sons, New York, 1233-1327.
      [9] Flower, B.P., Kennett, J.P., 1994. The Middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 537-555. doi: 10.1016/0031-0182(94)90251-8
      [10] Gong, G.C., Liu, K.K., Liu, C.T., et al., 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. TAO, Taiwan, 13(4): 587-602. http://tao.cgu.org.tw/index.php/articles/archive/hydrology/item/73
      [11] Gooday, A.J., 1994. The biology of deep-sea foraminifera: A review of some advances and their applications in paleoceanology. Palaios, 9: 14-31. doi: 10.2307/3515075
      [12] Gradstein, F., Ogg, J., Smith, A., 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, 589.
      [13] Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20: 353-431. doi: 10.1016/S1367-9120(01)00069-4
      [14] Hodell, D.A., Venz-Curtis, K.A., 2006. Late Neogene history of deepwater ventilation in the southern ocean. Geochemistry Geophysics Geosystems, 7: Q09001, doi:10. 1029/2005GC001211.
      [15] Holbourn, A., Kuhnt, W., Schulz, M., 2004. Orbital paced climate variability during the Middle Miocene: High resolution benthic foraminiferal stable-isotopic records from the tropical western Pacific. In: Clift, P., Wang, P., Kuhnt, W., et al., eds., Continent-ocean interactions within East Asian marginal seas. Geophysical Monograph, 149: 321-337.
      [16] Jian, Z.M., Wang, L., 1997. Late Quaternary benthic foraminifera and deep-water paleoceanography in the South China Sea. Marine Micropaleontology, 32: 127-154. doi: 10.1016/S0377-8398(97)00017-0
      [17] Jian, Z.M., Cheng, X.R., Zhao, Q.H., et al., 2001. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years. Science in China(Ser. D), 44(10): 952-960(in Chinese). doi: 10.1007/BF02907088
      [18] Kaiho, K., 1991. Global changes of Paleocene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 83: 65-85. doi: 10.1016/0031-0182(91)90076-4
      [19] Kaiho, K., 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in modern ocean. Geology, 22: 719-722. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/22/8/719/206098/Benthic-foraminiferal-dissolved-oxygen-index-and
      [20] Kuhnt, W., Holbourn, A., Zhao, Q., 2002. The early history of the South China Sea: Evolution of Oligocene-Miocene deep water environments. Revue de Micropaléontologie, 45: 99-159. https://www.researchgate.net/publication/279717102_The_early_history_of_the_South_China_Sea_Evolution_of_oligocene-miocene_deep_water_environments
      [21] Li, L., Qu, T., 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. Journal of Geophysical Research-Oceans, 111: C05017, doi: 10.1029/2005JC003164.
      [22] Li, Q.Y., Wang, P.X., Chen, M.H., et al., 2006. Paleoecological-environmental contrasts between the southern and northern South China Sea during mid-Pleistocene climate transition. Advances in Earth Science, 21: 781792(in Chinese with English abstract).
      [23] Li, Q.Y., Wang, P.X., Zhao, Q.H., et al., 2006. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Marine Geology, 230: 217-235. doi: 10.1016/j.margeo.2006.05.006
      [24] Liu, C.T., Liu, R.J., 1988. The deep current in the Bashi channel. Acta Oceanographica Taiwanica, 20: 107116. https://www.nature.com/articles/s41598-018-32541-9
      [25] Lyle, M., 2003. Neogene carbonate burial in the Pacific Ocean. Paleoceanography, 18: 1059, doi: 10. 1029/ 2002PA000777.
      [26] Miao, Q., Thunell, R.C., 1993. Recent deep-sea benthic foraminiferal distribution in the South China Sea. Marine Micropaleontology, 22: 1-32. doi: 10.1016/0377-8398(93)90002-F
      [27] Murray, J.W., 1991. Ecology and palaeoecology of benthic foraminifera. Longman Scientific & Technical, UK, 397.
      [28] Qu, T., Girton, J.B., Whitehead, J.A., 2006. Deepwater overflow through Luzon Strait. Journal of Geophysical Research-Oceans, 111: 10.1029/2005JC003139.
      [29] Ramsay, A.T.S., Sykes, T.J.S., Kidd, R.B., 1994. Waxing (and waning) lyrical on hiatuses: Eocene-Quaternary Indian Ocean hiatuses as proxy indicators of water mass production. Paleoceanography, 9: 857-877. doi: 10.1029/94PA01397
      [30] Roth, J.M., Droxler, A.W., Kameo, K., 2000. The Caribbean carbonate crash at the Middle to Late Miocene transition: Linkage to the establishment of the modern global ocean conveyor. Proceedings of the Ocean Drilling Program, Scientific Results, 165: 249-273. https://www.researchgate.net/publication/252340927_The_Caribbean_Carbonate_Crash_at_the_Middle_to_Late_Miocene_Transition_Linkage_to_the_Establishment_of_the_Modern_Global_Ocean_Conveyor
      [31] Sarnthein, M., Winn, K., 1990. Reconstruction of low and middle latitude export productivity, 30 000 years B.P. to present: Implication for control of global carbon reservoirs. In: Schlesinger, M.E., ed., Climate-ocean interaction. Kluwer Academic Publishers, Dordrecht, 319342.
      [32] Schmiedl, G., Mackensen, A., Mǜller, P.J., 1997. Recent benthic foraminifera from eastern South Atlantic Ocean: Dependence on supply and water masses. Marine Micropaleontology, 32: 249-287. doi: 10.1016/S0377-8398(97)00023-6
      [33] Sibuet, J.C., Hsu, S.K., Debayle, E., 2004. Geodynamic context of the Taiwan orogene. In: Clift, P., Wang, P., Kuhnt, W., et al., eds., Continent-ocean interactions within East Asian marginal seas. AGU Geophysical Monograph Series, 149: 127-158.
      [34] Tian, J., Wang, P.X., Cheng, X., 2004. Development of the East Asian monsoon and north hemisphere glaciation: Oxygen isotope records from the South China Sea. Quaternary Science Reviews, 23: 2007-2016. doi: 10.1016/j.quascirev.2004.02.013
      [35] Tian, J., Pak, D.K., Wang, P.X., et al., 2006. Late Pliocene monsoon linkage in the tropical South China Sea. Earth and Planetary Science Letters, 252: 72-81. doi: 10.1016/j.epsl.2006.09.028
      [36] Wang, P.X., Clemens, S., Beaufort, L., et al., 2005. Evolution and variability of the Asian monsoon system: Status of the art and outstanding issues. Quaternary Science Reviews, 24: 595-629. doi: 10.1016/j.quascirev.2004.10.002
      [37] Wang, P.X., Jian, Z.M., Zhao, Q.H., et al., 2003a. Evolution of the South China Sea and monsoon history revealed in deep-sea records. Chinese Science Bulletin, 48 (23): 2549-2561. doi: 10.1360/03wd0156
      [38] Wang, P.X., Prell, W.L., Blum, P., et al., 2000. Proceedings of the ocean drilling program, initial reports 184. College Station, TX(Ocean Drilling Program), 1-103 [CD-ROM].
      [39] Wang, P.X., Tian, J., Cheng, X. R., 2001. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea. Science in China(Ser. D), 44 (10): 926-933. doi: 10.1007/BF02907085
      [40] Wang, P.X., Zhao, Q.H., Jian, Z.M., et al., 2003b. Thirty million year deep-sea records in the South China Sea. Chinese Science Bulletin, 48(23): 2524-2535. doi: 10.1007/BF03037016
      [41] Xiong, Y., Zhong, G.F., Li, Q.Y., et al., 2006. Inversion of stratal carbonate content using seismic data and its applications to the northern South China Sea. Earth Science— Journal of China University of Geosciences, 17: 320-325(in Chinese with English abstract). doi: 10.1016/S1002-0705(07)60005-3
      [42] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693. doi: 10.1126/science.1059412
      [43] Zhao, Q.H., Jian, Z.M., Kuhnt, W., et al., 2007. Site 1148 benthic foraminiferal assemblages and their paleoceanographic implications(MS).
      [44] Zhao, Q.H., Jian, Z.M., Wang, J.L., et al., 2001a. Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. Science in China(Ser. D), 44(10): 934-942. doi: 10.1007/BF02907086
      [45] Zhao, Q.H., Wang, P.X., Cheng, X.R., et al., 2001b. A record of Miocene carbon excursions in the South China Sea. Science in China(Ser. D), 44(10): 943-951. doi: 10.1007/BF02907087
      [46] 陈晓良, 赵泉鸿, 翦知湣, 2002. 南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义. 海洋地质与第四纪地质, 22: 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200202013.htm
      [47] 翦知湣, 成鑫荣, 赵泉鸿, 等, 2001. 南海北部近6 Ma以来的氧同位素地层与事件. 中国科学(D辑), 31(10): 816822. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110003.htm
      [48] 李前裕, 汪品先, 陈木宏, 等, 2006. 中更新世气候转型时期南海生态环境的南北差异. 地球科学进展, 21: 781-792. doi: 10.3321/j.issn:1001-8166.2006.08.002
      [49] 汪品先, 翦知湣, 赵泉鸿, 等, 2003a. 南海演变与季风历史的深海证据. 科学通报, 48: 2228-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321004.htm
      [50] 汪品先, 田军, 成鑫荣, 2001. 第四纪冰期旋回转型在南沙深海的记录. 中国科学(D辑), 31(10): 793-799. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110000.htm
      [51] 汪品先, 赵泉鸿, 翦知湣, 等, 2003b. 南海三千万年的深海记录. 科学通报, 48: 2206-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321002.htm
      [52] 熊艳, 钟广法, 李前裕, 等, 2006. 利用地震资料反演地层的碳酸盐含量. 地球科学——中国地质大学学报, 31(6): 851-856. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606014.htm
      [53] 赵泉鸿, 翦知湣, 王吉良, 等, 2001a. 南海北部晚新生代氧同位素地层学, 中国科学(D辑), 31(10): 800-807. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110001.htm
      [54] 赵泉鸿, 汪品先, 成鑫荣, 等, 2001b. 中新世“碳位移”事件在南海的记录. 中国科学(D辑), 31(10): 808-815. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110002.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  3639
    • HTML全文浏览量:  121
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-04-08
    • 刊出日期:  2008-02-25

    目录

      /

      返回文章
      返回