• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    松辽盆地中部后裂谷早期正断层系形成机制

    龚发雄 单业华 林舸 李自安 刘士林

    龚发雄, 单业华, 林舸, 李自安, 刘士林, 2008. 松辽盆地中部后裂谷早期正断层系形成机制. 地球科学, 33(4): 547-554.
    引用本文: 龚发雄, 单业华, 林舸, 李自安, 刘士林, 2008. 松辽盆地中部后裂谷早期正断层系形成机制. 地球科学, 33(4): 547-554.
    GONG Fa-xiong, DAN Ye-hua, LIN Ge, LI Zi-an, LIU Shi-lin, 2008. Mechanism of Early Post-Rift Normal Faults in the Central Songliao Basin, Northeastern China. Earth Science, 33(4): 547-554.
    Citation: GONG Fa-xiong, DAN Ye-hua, LIN Ge, LI Zi-an, LIU Shi-lin, 2008. Mechanism of Early Post-Rift Normal Faults in the Central Songliao Basin, Northeastern China. Earth Science, 33(4): 547-554.

    松辽盆地中部后裂谷早期正断层系形成机制

    基金项目: 

    中国科学院“百人计划”启动项目 KZCX0543081001

    国家自然科学基金面上项目 40672144

    详细信息
      作者简介:

      龚发雄(1981—), 男, 在读博士, 主要从事盆地构造及构造数值模拟研究.E-mail:gongfaxiong@yahoo.com.cn

    • 中图分类号: P631.4; P618.130.2

    Mechanism of Early Post-Rift Normal Faults in the Central Songliao Basin, Northeastern China

    • 摘要: 在松辽盆地后裂谷早期的沉积地层里广泛发育着一个长度相对短、走向变化相对大的正断层系.大庆太平屯区块高精度三维地震勘探结果的构造研究表明, 该层伸展率可达0.0594±0.0209, 由此向上或向下发生明显的减少.这与裂谷盆地地层的伸展率自下而上一般呈单调递减是不一致的, 意味着单纯的区域拉伸不能够解释这种反常现象.笔者认为在成岩过程中沉积物可能发生的体积收缩应该是导致这种伸展率异常的主要原因.文中分析了造成体积收缩的3种可能机制: 生烃、伊利石化脱水和压实收缩, 其中最主要的是压实收缩机制.此外, 构造应力场也明显地影响着该断层系的形成, 造成断层走向分布具有一定的方向性.

       

    • 图  1  研究区的位置(a); T1、T2、和T3反射层断层迹线图(b, c, d); 走向玫瑰花园(e, f, g)

      断层迹线图中的实线和虚线分别代表着NW-SE (实线) 和E-W (虚线) 2个方向上的伸展量测量线

      Fig.  1.  Location of the study area (a), and fault trace maps (b, c, d) and their rosettes (e, f, g) in seismic reflection layers T1, T2, and T3

      图  2  太平屯区块T1、T2、T2-3y、T3和T4反射层的断层长度频率图

      Fig.  2.  Fault length frequency diagrams in the seismic reflection layers T1, T2, T2-3y, T3 and T4 in Taipingtun block

      图  3  NW-SE (实线) 和E-W (虚线) 2个方向上不同反射层位的实测应变范围及平均值

      Fig.  3.  The range of extensional strain and its average value measured in NW-SE and E-W directed scan lines in the different layers

      图  4  Mackunda地区多边形断层系迹线图(Watterson, 2000)

      Fig.  4.  The traces of polygonal faults in the Mackunda zone (Watterson, 2000)

      图  5  Cartwright and Lonergan (1996)的压实收缩模型

      在该模型中岩层两侧被固定, 变形层被限定在垂向上变化.在这种情况下, 正断层发育的唯一的途径是原始的层长在压实过程中收缩, 层长的收缩平衡了因断层形成而产生的伸展应变

      Fig.  5.  A model of volumetric contraction proposed by Cartwright and Lonergan (1996)

      图  6  不同压缩比下泥岩横向收缩率与埋深的关系

      虚线框是T2-3y反射层的现今埋深和应变测量值的约束范围

      Fig.  6.  Relationship between lateral shortening ratio and burial depth for variable ratio of horizontal to vertical shortening in contraction

      表  1  研究区不同反射层不同测线(图 1b-1d) 上获得的伸展率

      Table  1.   Extensional strain measured along the scan lines (see Fig. 1b-1d) in the seismic reflection layers in the study area

    • [1] Bruce, C. H., 1984. Smectite dehydration-its relation tostructural development and hydrocarbon accumulationin northern Gulf of Mexico Basin. AAPG Bulletin, 68: 673-683.
      [2] Cartwright, J. A., 1994a. Episodic basin-wide fluid expulsion from geopressured shale sequences in the North Sea ba-sin. Geology, 22 (5): 447-450. doi: 10.1130/0091-7613(1994)022<0447:EBWFEF>2.3.CO;2
      [3] Cartwright, J. A., 1994b. Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequencesin the North Sea basin. Marine and Petroleum Geology, 11 (5): 587-607. doi: 10.1016/0264-8172(94)90070-1
      [4] Cartwright, J. A., Dewhurst, D. N., 1998. Layer-bound compaction faults in fine-grained sediments. Geol. Soc. Am. Bull. , 110 (10): 1242-1257. doi: 10.1130/0016-7606(1998)110<1242:LBCFIF>2.3.CO;2
      [5] Cartwright, J. A., Lonergan, L., 1996. Volumetric contraction during the compaction of mudrocks: A mechanismfor the development of regional-scale polygonal faultsystems. Basin Research, 8 (2): 183-193. doi: 10.1046/j.1365-2117.1996.01536.x
      [6] Cartwright, J. A., Lonergan, L., 1997. Seismic expression of layer-bound fault systems of the Eromanga and North Sea basins. Expl. Geophys. , 28 (3): 323-331. doi: 10.1071/EG997323
      [7] Chi, Y. L., Xiao, D. M., Yin, J. Y., 2000. The injection pattern of oil and gas migration and accumulation in the Sanzhao area of Songliao basin. Acta Geologica Sinica, 74 (4): 371-377 (in Chinese with English abstract).
      [8] Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The development of polygonal fault systems by syneresis of colloidal sediments. Marine and Petroleum Geology, 16 (8): 793-810. doi: 10.1016/S0264-8172(99)00035-5
      [9] Engebretson, D. C., Cox, A., Gordon, R. G., 1985. Relativemotions between oceanic and continential plates in the Pacific basin. The Geological Society of America Special Paper, 206: 1-59.
      [10] Gong, F. X., Shan, Y. H., Lin, G., et al., 2006. Fault strikeandits significance of plate dynamics in central placanticline, Songliao basin. Xinjiang Petroleum Geology, 27 (6): 687-690 (in Chinese with English abstract).
      [11] Higgs, W. C., McClay, K. R., 1996. Analogue sandbox mod-eling of Miocene extensional faultinginthe outer MorayFirth. In: Tectonics and seismic sequence stratigraphy. Geological Society, London, Special Publications, 71: 141-162.
      [12] Hu, W. S., 1995. "T2" faults system and early Qingshankou stretched rifting in Songliao basin. Petroleum Exploration and Development, 22 (2): 8-12 (in Chinese withEnglish abstract).
      [13] Hu, W. S., Lü, B. Q., Zhang, W. J., et al., 2005. An ap-proach to tectonic evolution and dynamics of the Songliao basin. Chinese Journal of Geology, 40 (1): 16-31 (in Chinese with English abstract).
      [14] Li, J., Shu, L. S., 2002. Mesozoic-Cenozoic tectonic features and evolution of the Songliao basin, NE China. Journal of Nanjing University (Natural Sciences), 38 (4): 525-531 (in Chinese with English abstract).
      [15] Liu, D. L., Chen, F. J., Wen, X. Q., 1996. Analysis on theorigin of T2 post-rift formations in Songliao basin. Journal of Daqing Petroleum Institute, 20 (1): 23-27 (in Chinese with English abstract).
      [16] Lu, X. C., Liu, Q., Zhang, L. Y., 2004. Evaluation of contri-bution of illitization of smectite to the geopressure in oil-bearing basin. Bulletin of Mineralogy, Petrologyand Geochemisty, 23 (4): 285-291 (in Chinese withEnglish abstract).
      [17] Mark, J. O., Richard, E. S., 1997. Mechanisms for generating over pressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81 (6): 1023-1041.
      [18] Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleo-geographic maps of the Japanese islands: Plate tectonic systhesis from 750Ma to the present. Island Arc, 6: 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
      [19] Mei, L. F., Fei, Q., Xu, S. H., 1996. The natural hydrofracture systems of T2 faults in Songliao basin. Earth Science—Journal of China University of Geosciences, 21 (6): 632 (in Chinese).
      [20] Ren, J., Tamaki, K., Li, S., et al., 2002. Late Mesozoic andCenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344 (3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2
      [21] Ren, Z. L., Xiao, D. M., Chi, Y. L., 2001. Restoration of the palaeogeotherm in Songliao basin. Petroleum Geology & Oilfield Development in Daqing, 20 (1): 13-14 (inChinese with English abstract).
      [22] Van Der Voo, R., Spakman, W., Bijwaard, H., 1999. Mesozoic subducted slabs under Siberia. Nature, 397 (21): 246-249.
      [23] Watterson, J., 2000. Geometry and origin of a polygonal fault system. Journal of the Geological Society, 157 (1): l51-162.
      [24] Wojtal, S. F., 1994. Fault scaling laws and the temporal evolution of fault systems. Journal of Structural Geology, 16 (4): 603-612. doi: 10.1016/0191-8141(94)90100-7
      [25] Yan, D. P., Tian, C. L., Meng, L. B., et al., 2003. Balanced geological section for extensional tectonic basin and itsimplication: An example from southern Songliao basin. Earth Science—Journal of China University of Geosciences, 28 (3): 275-280 (in Chinese with English ab-stract).
      [26] Yang, Q., Qi, J. F., 2003. Method of delaminated decompaction correction. Petroleum Geology & Experiment, 25 (2): 206-210 (in Chinese with English abstract).
      [27] Yielding, G., Needham, T., Jones, H., 1996. Sampling of fault populations using sub-surface data: A review. Journal of Structural Geology, 18 (2/3): 135-146.
      [28] 迟元林, 萧德铭, 殷进垠, 2000. 松辽盆地三肇地区上生下储"注入式"成藏机制. 地质学报, 74 (4): 371-377. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200004010.htm
      [29] 龚发雄, 单业华, 林舸, 等, 2006. 松辽盆地长垣中部断层走向及板块动力学意义. 新疆石油地质, 27 (6): 687-690. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200606010.htm
      [30] 胡望水, 1995. 松辽盆地"T2"断层系及青山口早期伸展裂陷. 石油勘探与开发, 22 (2): 8-12. doi: 10.3321/j.issn:1000-0747.1995.02.012
      [31] 胡望水, 吕炳全, 张文军, 等, 2005. 松辽盆地构造演化及成盆动力学探讨. 地质科学, 40 (1): 16-31. doi: 10.3321/j.issn:0563-5020.2005.01.002
      [32] 李娟, 舒良树, 2002. 松辽盆地中、新生代构造特征及其演化南京大学学报(自然科学), 38 (4): 525-531.
      [33] 刘德来, 陈发景, 温详泉, 1996. 松辽盆地坳陷期T2断层成因机制分析. 大庆石油学院学报, 20 (1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY601.005.htm
      [34] 陆现彩, 刘庆, 张林晔, 2004. 蒙脱石伊利石化对含油气盆地地层压力影响的定量研究. 矿物岩石地球化学通报, 23 (4): 285-291. doi: 10.3969/j.issn.1007-2802.2004.04.002
      [35] 梅廉夫, 费琪, 徐思煌, 1996. 松辽盆地"T2"天然水力断裂系统. 地球科学——中国地质大学学报, 21 (6): 632. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX606.021.htm
      [36] 任战利, 萧德铭, 迟元林, 2001. 松辽盆地古地温恢复. 大庆石油地质与开发, 20 (1): 13-14. doi: 10.3969/j.issn.1000-3754.2001.01.004
      [37] 颜丹平, 田崇鲁, 孟令波, 等, 2003. 伸展构造盆地的平衡剖面及其构造意义. 地球科学——中国地质大学学报, 28 (3): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200303006.htm
      [38] 杨桥, 漆家福, 2003. 碎屑岩层的分层去压实校正方法. 石油实验地质, 25 (2): 206-210. doi: 10.3969/j.issn.1001-6112.2003.02.019
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  3522
    • HTML全文浏览量:  113
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-07-26
    • 刊出日期:  2008-07-25

    目录

      /

      返回文章
      返回