Influence of Topography on the Hydrothermal Circulation within the Hydrothermal Sulfide Deposit
-
摘要: 在三层结构热液硫化物矿体模型的基础上, 分别构建了具有不同地形环境的海底热液硫化物矿体模型, 利用数值模拟方法, 模拟了具有倾斜海底面和起伏地形特征的硫化物矿体模型内部温度场和流场分布, 并据此探讨了地形环境在大型海底热液硫化物矿体形成过程中的控制作用.模拟结果表明: (1) 倾斜的洋壳层顶面对于矿体内温度场和流场分布的影响程度有限; (2) 矿体地形起伏是控制矿体内流体运移和热场分布的重要因素; (3) 在热液流体喷出区附近硫化物的堆积速度较快, 易于形成矿体的高地形区; 但随着地形的不断升高, 矿体内部的温度场和流场的分布模式会逐渐发生改变, 导致该区域热液喷口逐渐消亡或者改道.Abstract: Based on the three-layer model of seafloor hydrothermal sulfide deposit, the deposit models with diverse topography have been built.With numerical approach, the distribution of inner thermal and flow fields of the large hydrothermal sulfide deposit model featuring sloping crust and relief top is simulated to discuss the effect of the different relief on the formation processes of the hydrothermal sulfide deposit.The results indicate: (1) the sloping seafloor has a limited influence on the distribution of thermal and flow fields within the hydrothermal sulfide deposit. (2) The relief top is one of the dominating factors that control distribution of the thermal and flow fields within the hydrothermal sulfide deposit. (3) Hydrothermal sulfides precipitate and accumulate rapidly near the region of focused venting, thus easily forming high relief.As the continuous rising of this high relief, the distribution mode of the thermal and flow fields gradually changes, which causes the hydrothermal venting to gradually cease or redirect.
-
Key words:
- seafloor hydrothermal activity /
- sulfide deposit /
- hydrothermal circulation /
- topography
-
表 1 模型相关的物理参数
Table 1. Physical parameters related with the model
-
[1] Binns, R. A., 2006. Data report: Geochemistry of massive and semimassive sulfides from Site 1189, Ocean Drilling Program Leg 193. Proceedings of the Ocean Drilling Program, Scientific Results, MS: 193SR-206. [2] Binns, R. A., Barriga, E. J. A., Miller, D. J., 2007. Leg 193 synthesis: Anatomy of an active felsic-hosted hydrothermal system, Eastern Manus basin, Papua New Guinea. Proceedings of the Ocean Drilling Program, Scientific Results, MS: 193SR-201. [3] Dickson, P., Schultz, A., Woods, A., 1995. Preliminary modelling of hydrothermal circulation within mid-ocean ridge sulphide structures. Geological Society of London, Special Publication, 87: 145-157. doi: 10.1144/GSL.SP.1995.087.01.13 [4] Edmond, J. M., Campbell, A. C., Palmer, M. R., et al., 1995. Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: A new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies. Geological Society of London, Special Publication, 87: 77-86. doi: 10.1144/GSL.SP.1995.087.01.07 [5] Glasby, G. P., Notsu, K., 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview. Ore Geology Reviews, 23: 299-339. doi: 10.1016/j.oregeorev.2003.07.001 [6] Gröschel-Becke, H. M., Villinger, H. W., Konyukhov, B. A., et al., 1993. Seismic velocities of diabase and basalt from Middle Valley sills and flow, northern, Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 597-612. [7] Herzig, P. M., Petersen, S., Hannington, M. D., 1998. Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 47-70. [8] Honnorez, J., Mevel, C., Honnorez-Guerstein, B. M., 1990. Mineralogy and chemistry of sulfide deposits drilled from hydrothermal mound of the Snake Pit active field, MAR. Proceedings of the Ocean Drilling Program, Scientific Results, 106/109: 145-162. [9] Houghton, J. L., Shanks, W. C., Seyfried, W. E., 2004. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 68 (13): 2863-2873. doi: 10.1016/j.gca.2003.12.023 [10] Jiang, S. Y., Yang, T., Li, L., et al., 2006. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge. Acta Petrologica Sinica, 22 (10): 2597-2602 (in Chinese with English abstract). [11] Jupp, T., Schultz, A., 2000. A thermodynamic explanation for black smoker temperatures. Nature, 403: 880-883. doi: 10.1038/35002552 [12] Kase, K., Yamamoto, M., Shibata, T., 1990. Copper-rich sulfide deposit near 23°N, Mid-Atlantic Ridge: Chemical composition, mineral chemistry, and sulfur isotopes. Proceedings of the Ocean Drilling Program, Scientific Results, 106/109: 163-177. [13] Knenneth, L., Kipp, J., Paul, A., et al., 2007. Guide to the revised ground-water flow and heat transport simulator: Hydrothermal-version 3. U S Geological Survey, Chapter 2. [14] Knott, R., Fouquet, Y., Honnorez, Y., et al., 1998. Petrology of hydrothermal mineralization: A vertical section through the TAG mound. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 5-26. [15] Krasnov, S., Stepanova, T., Stepanov, M., 1994. Chemical composition and formation of a massive sulfide deposit, Middle Valley, North Juan de Fuca Ridge (Site 856). Proceedings of the Ocean Drilling Program, Scientific Results, 139: 353-372. [16] Ludwig, R. J., Iturrino, G. J., Rona, P. A., 1998. Seismic velocity-porosity relationship of sulfides, sulfate, and basalt samples from the TAG hydrothermal mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 313-327. [17] Moss, R., Scott, S. D., 2001. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus basin, Papua New Guinea. The Canadian Mineralogist, 39 (4): 957-978. doi: 10.2113/gscanmin.39.4.957 [18] Pachel, A., Cann, J. R., 1995. Modeling diffuse hydrothermal flow in black smoker vent fields. Geological Society of London, Special Publication, 87: 159-173. doi: 10.1144/GSL.SP.1995.087.01.14 [19] Polyansky, O. P., Poort, J., 2000.2D modeling of fluid flow and heat transport during the evolution of the Baikal rift. Journal of Geochemical Exploration, 70: 77-81. [20] Rohr, K. M. M., Schmidt, U., 1994. Seismic structure of Middle Valley near sites 855-858, Leg 139, Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 1-15. [21] Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. Journal of Geophysical Research, 100 (B7): 12527-12555. doi: 10.1029/95JB00610 [22] Tivey, M. K., Mills, R. A., Damon, A. H., 1998. Temperature and salinity of fluid inclusions in anhydrite as indicators of seawater entrainment and heating in the TAG active mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 179-190. [23] Wang, K., He, J., Davis, E. E., 1997. Influence of basement topography on hydrothermal circulation in sediment-buried igneous oceanic crust. Earth and Planetary Science Letters, 146 (1-2): 151-164. doi: 10.1016/S0012-821X(96)00213-0 [24] Wang, X. T., Zhai, S. K., Meng, F. S., et al., 2006. Influence of permeability on hydrothermal circulation in the sediment-buried oceanic crust. Science in China (Series D), 36 (9): 871-880 (in Chinese). [25] Zeng, Z. G., Qin, Y. S., Zhai, S. K., 2000a. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal froms TAG hydrothermal field, Mid-Atlantic Ridge. Science in China (Series D), 30 (6): 628-633 (in Chinese). [26] Zeng, Z. G., Qin, Y. S., Zhao, Y. Y., et al., 2000b. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications. Oceanologia et Limnologia Sinica, 31 (5): 518-529 (in Chinese with English abstract). [27] Zeng, Z. G., Qin, Y. S., Zhai, S. K., 2001. Lead isotope compositions of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications. Journal of Ocean University of Qingdao, 31 (1): 103-109 (in Chinese with English abstract). [28] Zeng, Z. G., Zhai, S. K., Du, A. D., 2002. Os isotopic compositions of seafloor massive sulfide from the TAG hydrothermal field in the Mid-Atlantic Ridge. Acta Sedimentologica Sinica, 20 (3): 394-398 (in Chinese with English abstract). [29] Zeng, Z. G., Zhai, S. K., Zhao, Y. Y., et al., 1999. Rare earth element geochemistry of hydrothermal sediment from the TAG hydrothermal field, Mid-Atlantic Ridge. Marine Geology & Quaternary Geology, 19 (3): 59-66 (in Chinese with English abstract). [30] 蒋少涌, 杨涛, 李亮, 等, 2006. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究. 岩石学报, 22 (10): 2597-2602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610020.htm [31] 王兴涛, 翟世奎, 孟凡顺, 等, 2006. 渗透率对沉积物覆盖洋壳内热液循环的影响. 中国科学(D辑), 36 (9): 871-880. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609008.htm [32] 曾志刚, 秦蕴珊, 翟世奎, 2000a. 大西洋中脊TAG热液区硫化物中流体包裹体的He-Ne-Ar同位素组成. 中国科学(D辑), 30 (6): 628-633. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200006008.htm [33] 曾志刚, 秦蕴珊, 赵一阳, 等, 2000b. 大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义. 海洋与湖沼, 31 (5): 518-529. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ200005009.htm [34] 曾志刚, 秦蕴珊, 翟世奎, 2001. 大西洋洋中脊海底表层热液沉积物的铅同位素组成及其地质意义. 青岛海洋大学学报, 31 (1): 103-109. doi: 10.3969/j.issn.1672-5174.2001.01.010 [35] 曾志刚, 翟世奎, 杜安道, 2002. 大西洋洋中脊TAG热液区中块状硫化物的Os同位素研究. 沉积学报, 20 (3): 394-398. doi: 10.3969/j.issn.1000-0550.2002.03.006 [36] 曾志刚, 翟世奎, 赵一阳, 等, 1999. 大西洋中脊TAG热液活动区中热液沉积物的稀土元素地球化学特征. 海洋地质与第四纪地质, 19 (3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ903.009.htm