• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地形环境对海底热液硫化物矿体内部流体循环的影响

    李怀明 翟世奎 于增慧 初凤友 陶春辉

    李怀明, 翟世奎, 于增慧, 初凤友, 陶春辉, 2008. 地形环境对海底热液硫化物矿体内部流体循环的影响. 地球科学, 33(4): 538-546.
    引用本文: 李怀明, 翟世奎, 于增慧, 初凤友, 陶春辉, 2008. 地形环境对海底热液硫化物矿体内部流体循环的影响. 地球科学, 33(4): 538-546.
    LI Huai-ming, ZHAI Shi-kui, YU Zeng-hui, CHU Feng-you, TAO Chun-hui, 2008. Influence of Topography on the Hydrothermal Circulation within the Hydrothermal Sulfide Deposit. Earth Science, 33(4): 538-546.
    Citation: LI Huai-ming, ZHAI Shi-kui, YU Zeng-hui, CHU Feng-you, TAO Chun-hui, 2008. Influence of Topography on the Hydrothermal Circulation within the Hydrothermal Sulfide Deposit. Earth Science, 33(4): 538-546.

    地形环境对海底热液硫化物矿体内部流体循环的影响

    基金项目: 

    国家重大基础研究发展规划项目 G2000078503

    中国大洋协会项目 DY115-02-1-01

    详细信息
      作者简介:

      李怀明(1977—), 男, 博士研究生, 主要从事现代海底热液活动研究.E-mail:huaiming_lee@163.com

    • 中图分类号: P628

    Influence of Topography on the Hydrothermal Circulation within the Hydrothermal Sulfide Deposit

    • 摘要: 在三层结构热液硫化物矿体模型的基础上, 分别构建了具有不同地形环境的海底热液硫化物矿体模型, 利用数值模拟方法, 模拟了具有倾斜海底面和起伏地形特征的硫化物矿体模型内部温度场和流场分布, 并据此探讨了地形环境在大型海底热液硫化物矿体形成过程中的控制作用.模拟结果表明: (1) 倾斜的洋壳层顶面对于矿体内温度场和流场分布的影响程度有限; (2) 矿体地形起伏是控制矿体内流体运移和热场分布的重要因素; (3) 在热液流体喷出区附近硫化物的堆积速度较快, 易于形成矿体的高地形区; 但随着地形的不断升高, 矿体内部的温度场和流场的分布模式会逐渐发生改变, 导致该区域热液喷口逐渐消亡或者改道.

       

    • 图  1  三层结构热液硫化物矿体几何模型

      Fig.  1.  The geometric model of the hydrothermal sulfide deposit with 3-layers

      图  2  热液硫化物矿体地形模型

      Fig.  2.  The hydrothermal sulfide deposit models with diverse relief

      图  3  模型的底边界热通量分布

      Fig.  3.  The thermal flux distribution on the bottom boundary of the model

      图  4  具有倾斜海底面特征模型一的模拟结果

      其中图a、b和c分别为该模型中温度场、流场和流体通量的分布图; 1E-5=1×10-5

      Fig.  4.  The calculated results of the model 1

      图  5  具有起伏地形特征模型二的模拟结果

      其中图a、b和c分别为该模型中温度场、流场和流体通量的分布图; 9E-6=9×10-6

      Fig.  5.  The calculated results of the model 2

      图  6  具有起伏地形特征模型三的模拟结果

      其中图a、b和c分别为该模型中温度场、流场和流体通量的分布图; 1E-6=1×10-6

      Fig.  6.  The calculated results of the model 3

      表  1  模型相关的物理参数

      Table  1.   Physical parameters related with the model

    • [1] Binns, R. A., 2006. Data report: Geochemistry of massive and semimassive sulfides from Site 1189, Ocean Drilling Program Leg 193. Proceedings of the Ocean Drilling Program, Scientific Results, MS: 193SR-206.
      [2] Binns, R. A., Barriga, E. J. A., Miller, D. J., 2007. Leg 193 synthesis: Anatomy of an active felsic-hosted hydrothermal system, Eastern Manus basin, Papua New Guinea. Proceedings of the Ocean Drilling Program, Scientific Results, MS: 193SR-201.
      [3] Dickson, P., Schultz, A., Woods, A., 1995. Preliminary modelling of hydrothermal circulation within mid-ocean ridge sulphide structures. Geological Society of London, Special Publication, 87: 145-157. doi: 10.1144/GSL.SP.1995.087.01.13
      [4] Edmond, J. M., Campbell, A. C., Palmer, M. R., et al., 1995. Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: A new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies. Geological Society of London, Special Publication, 87: 77-86. doi: 10.1144/GSL.SP.1995.087.01.07
      [5] Glasby, G. P., Notsu, K., 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview. Ore Geology Reviews, 23: 299-339. doi: 10.1016/j.oregeorev.2003.07.001
      [6] Gröschel-Becke, H. M., Villinger, H. W., Konyukhov, B. A., et al., 1993. Seismic velocities of diabase and basalt from Middle Valley sills and flow, northern, Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 597-612.
      [7] Herzig, P. M., Petersen, S., Hannington, M. D., 1998. Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 47-70.
      [8] Honnorez, J., Mevel, C., Honnorez-Guerstein, B. M., 1990. Mineralogy and chemistry of sulfide deposits drilled from hydrothermal mound of the Snake Pit active field, MAR. Proceedings of the Ocean Drilling Program, Scientific Results, 106/109: 145-162.
      [9] Houghton, J. L., Shanks, W. C., Seyfried, W. E., 2004. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 68 (13): 2863-2873. doi: 10.1016/j.gca.2003.12.023
      [10] Jiang, S. Y., Yang, T., Li, L., et al., 2006. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge. Acta Petrologica Sinica, 22 (10): 2597-2602 (in Chinese with English abstract).
      [11] Jupp, T., Schultz, A., 2000. A thermodynamic explanation for black smoker temperatures. Nature, 403: 880-883. doi: 10.1038/35002552
      [12] Kase, K., Yamamoto, M., Shibata, T., 1990. Copper-rich sulfide deposit near 23°N, Mid-Atlantic Ridge: Chemical composition, mineral chemistry, and sulfur isotopes. Proceedings of the Ocean Drilling Program, Scientific Results, 106/109: 163-177.
      [13] Knenneth, L., Kipp, J., Paul, A., et al., 2007. Guide to the revised ground-water flow and heat transport simulator: Hydrothermal-version 3. U S Geological Survey, Chapter 2.
      [14] Knott, R., Fouquet, Y., Honnorez, Y., et al., 1998. Petrology of hydrothermal mineralization: A vertical section through the TAG mound. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 5-26.
      [15] Krasnov, S., Stepanova, T., Stepanov, M., 1994. Chemical composition and formation of a massive sulfide deposit, Middle Valley, North Juan de Fuca Ridge (Site 856). Proceedings of the Ocean Drilling Program, Scientific Results, 139: 353-372.
      [16] Ludwig, R. J., Iturrino, G. J., Rona, P. A., 1998. Seismic velocity-porosity relationship of sulfides, sulfate, and basalt samples from the TAG hydrothermal mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 313-327.
      [17] Moss, R., Scott, S. D., 2001. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus basin, Papua New Guinea. The Canadian Mineralogist, 39 (4): 957-978. doi: 10.2113/gscanmin.39.4.957
      [18] Pachel, A., Cann, J. R., 1995. Modeling diffuse hydrothermal flow in black smoker vent fields. Geological Society of London, Special Publication, 87: 159-173. doi: 10.1144/GSL.SP.1995.087.01.14
      [19] Polyansky, O. P., Poort, J., 2000.2D modeling of fluid flow and heat transport during the evolution of the Baikal rift. Journal of Geochemical Exploration, 70: 77-81.
      [20] Rohr, K. M. M., Schmidt, U., 1994. Seismic structure of Middle Valley near sites 855-858, Leg 139, Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results, 139: 1-15.
      [21] Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. Journal of Geophysical Research, 100 (B7): 12527-12555. doi: 10.1029/95JB00610
      [22] Tivey, M. K., Mills, R. A., Damon, A. H., 1998. Temperature and salinity of fluid inclusions in anhydrite as indicators of seawater entrainment and heating in the TAG active mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 179-190.
      [23] Wang, K., He, J., Davis, E. E., 1997. Influence of basement topography on hydrothermal circulation in sediment-buried igneous oceanic crust. Earth and Planetary Science Letters, 146 (1-2): 151-164. doi: 10.1016/S0012-821X(96)00213-0
      [24] Wang, X. T., Zhai, S. K., Meng, F. S., et al., 2006. Influence of permeability on hydrothermal circulation in the sediment-buried oceanic crust. Science in China (Series D), 36 (9): 871-880 (in Chinese).
      [25] Zeng, Z. G., Qin, Y. S., Zhai, S. K., 2000a. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal froms TAG hydrothermal field, Mid-Atlantic Ridge. Science in China (Series D), 30 (6): 628-633 (in Chinese).
      [26] Zeng, Z. G., Qin, Y. S., Zhao, Y. Y., et al., 2000b. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications. Oceanologia et Limnologia Sinica, 31 (5): 518-529 (in Chinese with English abstract).
      [27] Zeng, Z. G., Qin, Y. S., Zhai, S. K., 2001. Lead isotope compositions of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications. Journal of Ocean University of Qingdao, 31 (1): 103-109 (in Chinese with English abstract).
      [28] Zeng, Z. G., Zhai, S. K., Du, A. D., 2002. Os isotopic compositions of seafloor massive sulfide from the TAG hydrothermal field in the Mid-Atlantic Ridge. Acta Sedimentologica Sinica, 20 (3): 394-398 (in Chinese with English abstract).
      [29] Zeng, Z. G., Zhai, S. K., Zhao, Y. Y., et al., 1999. Rare earth element geochemistry of hydrothermal sediment from the TAG hydrothermal field, Mid-Atlantic Ridge. Marine Geology & Quaternary Geology, 19 (3): 59-66 (in Chinese with English abstract).
      [30] 蒋少涌, 杨涛, 李亮, 等, 2006. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究. 岩石学报, 22 (10): 2597-2602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610020.htm
      [31] 王兴涛, 翟世奎, 孟凡顺, 等, 2006. 渗透率对沉积物覆盖洋壳内热液循环的影响. 中国科学(D辑), 36 (9): 871-880. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609008.htm
      [32] 曾志刚, 秦蕴珊, 翟世奎, 2000a. 大西洋中脊TAG热液区硫化物中流体包裹体的He-Ne-Ar同位素组成. 中国科学(D辑), 30 (6): 628-633. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200006008.htm
      [33] 曾志刚, 秦蕴珊, 赵一阳, 等, 2000b. 大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义. 海洋与湖沼, 31 (5): 518-529. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ200005009.htm
      [34] 曾志刚, 秦蕴珊, 翟世奎, 2001. 大西洋洋中脊海底表层热液沉积物的铅同位素组成及其地质意义. 青岛海洋大学学报, 31 (1): 103-109. doi: 10.3969/j.issn.1672-5174.2001.01.010
      [35] 曾志刚, 翟世奎, 杜安道, 2002. 大西洋洋中脊TAG热液区中块状硫化物的Os同位素研究. 沉积学报, 20 (3): 394-398. doi: 10.3969/j.issn.1000-0550.2002.03.006
      [36] 曾志刚, 翟世奎, 赵一阳, 等, 1999. 大西洋中脊TAG热液活动区中热液沉积物的稀土元素地球化学特征. 海洋地质与第四纪地质, 19 (3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ903.009.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  3631
    • HTML全文浏览量:  87
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-10-25
    • 刊出日期:  2008-07-25

    目录

      /

      返回文章
      返回