Negative Anomaly of Carbon Isotope from Carbonates of Sinian Dongpo Formation in Ruzhou and Lushan, Henan Province and Its Geological Significance
-
摘要: 河南汝州、鲁山一带罗圈组冰积层之上的东坡组以页岩、粉砂质页岩及粉砂岩为主.笔者发现了东坡组夹有白云岩透镜体及白云质粉砂岩、砂岩.白云质粉砂岩具有与东坡组页岩不协调的软沉积变形.白云岩透镜体和白云质粉砂岩具有明显的δ13C负偏.白云岩透镜体的δ13C为-4.19‰~-6.18‰.白云质粉砂岩的δ13C大部分为-2‰~-4‰之间.因此认为, 东坡组的白云岩透镜体及白云质粉砂岩、砂岩与华南震旦纪盖帽白云岩及南华纪Sturtian冰期冰积层之上的碳酸盐丘和菱锰矿类似, 为冰积层中的天然气水合物泄漏释放的CO2和海水中的Mg2+发生快速反应快速沉淀而成的, 即东坡组的白云岩、白云质粉砂岩、砂岩为冷泉成因.Abstract: Sinian Dongpo Formation overlying tillite of Luoquan Formation consists mainly of shales, silty shales and siltstones.Lenticular dolomites, dolomitic siltstones and sandstones are unexpectedly found in Dongpo Formation.Soft-sediment reformation occurs in dolomitic siltstones which are inconsistent with the shales of Dongpo Formation.Negative anomaly of δ13C is found in lenticular dolomites and dolomitic siltstones.δ13C of lenticular dolomites is-4.19‰ to-6.18‰ and δ13C of dolomitic siltstones mostly between-2‰ to-4‰.So it is considered that lenticular dolomites, dolomitic siltstones and sandstones in Dongpo Formation, similar to cap dolomite of Sinian and seep carbonates overlying tillite of Sturtian ice-age in South China, have been formed by interaction between CO2 seeped from gas hydrate and Mg2+ in sea water, that is, lenticular dolomites, dolomitic siltstones and sandstones in Dongpo Formation are the cause of formation of cold spring.
-
Key words:
- cold seep carbonate /
- carbon isotope /
- Sinian /
- Henan Province
-
表 1 汝州-鲁山东坡组白云岩和白云质粉砂岩的碳、氧同位素含量
Table 1. Contents of C, O isotopes of dolomite and dolomitic siltstone from Dongpo Formation in Ruzhou and Lushan
-
[1] Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623-626. doi: 10.1038/35036572 [2] Bohrmann, G., Greinert, J., Suess, E., et al., 1998. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 26: 647-650. [3] Brown, K. M., Bangs, N. L., Froelich, P. N., et al., 1996. The nature, distribution, and origin of gas hydrate in the Chile triple junction region. EPSL, 139: 471-483. doi: 10.1016/0012-821X(95)00243-6 [4] Cavagna, S., Clari, P., Martire, L., et al., 1999. The role of bacteria in the formation of cold seep carbonates: Geological evidence from Monferrato (Tertiary, NW Italy). Sedimentary Geology, 126: 253-270. doi: 10.1016/S0037-0738(99)00044-5 [5] Chen, D. F., Chen, X. P., Chen, G. Q., 2002. Geology and geochemistry of cold seepage and venting-related carbonates. Acta Sedimentologica Sinica, 20 (1): 34-40 (in Chinese with English abstract). [6] Chen, Z., Yan, W., Chen, M. H., et al., 2006. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea. Chinese Science Bulletin, 51 (10): 1228-1237. doi: 10.1007/s11434-006-1228-8 [7] Cronin, B. T., Ivanov, M. K., Limonov, A. F., et al., 1997. New discoveries of mud volcanoes on the eastern Mediterranean Ridge. Jour. Geol. Soc., London, 154 (2): 173-182. doi: 10.1144/gsjgs.154.2.0173 [8] Feng, D., Chen, D. F., Liu, Q., 2006. Formation of Late Neoproterozoic cap carbonates and termination mechanism of "Snowball Earth". Acta Sedimentologica Sinica, 24 (2): 235-241 (in Chinese with English abstract). [9] Feng, D., Chen, D. F., Su, Z., et al., 2005. Characteristics of cold seep carbonates and microbial processes in gas seep system. Geoscience, 19 (1): 26-32 (in Chinese with English abstract). [10] Guan, B. D., Geng, W. C., Rong, Z. Q., et al., 1988. Meso-Upper Proterozoic in northern East Qinling Mts. Henan Science and Technology Press, Zhengzhou, 32-41 (in Chinese). [11] Guan, B. D., Pan, Z. C., Geng, W. C., et al., 1980. Sinian in northern East Qinling Mts. In: Tianjin Institute of Geology and Mineral Resources, ed., Sinian of China. Tianjin Science and Technology Press, Tianjin, 295-297 (in Chinese). [12] Jiang, G. Q., Kennedy, M. J., Christie-Blick, N., 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426: 822-826. doi: 10.1038/nature02201 [13] Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2006. The structure of methane seepage, release of the resolution of hydrate and cap carbonates after Neoproterozoic glacial period. Chinese Science Bulletin, 51 (10): 1121-1138. doi: 10.1360/csb2006-51-10-1121 [14] Kulm, L. D., Suess, E., Moore, J. C., et al., 1986. Oregon subduction zone: Venting, fanua, and carbonates. Science, 231: 561-566. doi: 10.1126/science.231.4738.561 [15] Lallemand, S. E., Glacon, G., Lauriat-Rage, A., et al., 1992. Seafloor manifestatuins of fluid seepage at the top of a 2 000 m deep ridge in the eastern Nankai accretionary wedge: Long-lived venting and tectonic implications. Earth and Planetary Science Letters, 109: 333-346. doi: 10.1016/0012-821X(92)90096-E [16] Lu, H. F., Liu, J., Chen, F., et al., 2005. Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the offshore area of Southwest Taiwan, South China Sea: Evidence for gas hydrates occurrence. Earth Science Frontiers, 12 (3): 268-276 (in Chinese with English abstract). [17] Neurauter, T. W., Roberts, H. H., 1994. Three generations of mud volcanoes on the Louisiana continental slope. Geo-Marine Letters, 14: 120-125. doi: 10.1007/BF01203723 [18] Orange, D. L., Greene, H. G., Reed, D., et al., 1999. Widespread fluid expulsion on a translational continental margin; Mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. Geological Society of America Bulletin, 111 (7): 992-1009. doi: 10.1130/0016-7606(1999)111<0992:WFEOAT>2.3.CO;2 [19] Peckmann, J., Goedert, J. L., Heinrichs, T., et al., 2003. The Late Eocene 'Whiskey Creek' methane-seep deposit (western Washington State): Part Ⅱ, petrology, stable isotopes, and biogeochemistry. Facies, 48: 241-253. doi: 10.1007/BF02667542 [20] Peckmann, J., Reimer, A., Luth, U., et al., 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177: 129-150. doi: 10.1016/S0025-3227(01)00128-1 [21] Peckmann, J., Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205: 443-467. doi: 10.1016/j.chemgeo.2003.12.025 [22] Peckmann, J., Thiel, V., Michaelis, W., et al., 1999. Cold seep deposits of Beauvoisin (Oxfordian, southeastern France) and Marmorito (Miocene; northern Italy): Microbially induced authigenic carbonates. International Journal of Earth Sciences, 88: 60-75. doi: 10.1007/s005310050246 [23] Roberts, H. H., Aharon, P., 1994. Hydrocarbon-derived carbonate buildups of the northern gulf of Mexico continental slope: A review of submersible investigations. Geo-Marine Letters, 14: 135-148. doi: 10.1007/BF01203725 [24] Torres, M. E., Wallmann, K., Trehu, A. M., et al., 2004. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of hydrate ridge, Cascadia margin off Oregon. EPSL, 226: 225-241. doi: 10.1016/j.epsl.2004.07.029 [25] Yang, Z. J., 1958. Stratigraphy and their correlation of the Lower Paleozoic. Acta Geologica Sinica, 38 (4): 473-510 (in Chinese). [26] Zhou, Q., Du, Y. S., Qin, Y., et al., 2007a. The discovery of structures of the ancient gas seep from the Lower Nanhua System in Datangpo, Songtao County, Guizhou Province and its geological significance. Earth Science—Journal of China University of Geosciences, 32 (Suppl. ): 33-40 (in Chinese with English abstract). [27] Zhou, Q., Du, Y. S., Wang, J. S., et al., 2007b. Characteristics and significance of the cold seep carbonates from the Datangpo Formation of the Nanhua Series in the Northeast Guizhou. Earth Science—Journal of China University of Geosciences, 32 (3): 339-346 (in Chinese with English abstract). [28] Zhou, Q., Du, Y. S., Yan, J. X., et al., 2007c. Geological and geochemical characteristics of the cold seep carbonates in the Early Nanhua System in Datangpo, Songtao, Guizhou Province. Earth Science—Journal of China University of Geosciences, 32 (6): 845-852 (in Chinese with English abstract). [29] Леин, А. Ю., 2006. Cold firedamp seep from Black Sea and Norway Sea. Translated by Zhu, F. H. . Marine Geology Letters, 22 (9): 25-26, 36 (in Chinese with English abstract). [30] 陈多福, 陈先沛, 陈光谦, 2002. 冷泉流体沉积碳酸盐岩的地质地球化学特征. 沉积学报, 20 (1): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201006.htm [31] 冯东, 陈多福, 刘芊, 2006. 新元古代晚期盖帽碳酸盐岩的成因与"雪球地球"的终结机制. 沉积学报, 24 (2): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200602011.htm [32] 冯东, 陈多福, 苏正, 等, 2005. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征. 现代地质, 19 (1): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200501003.htm [33] 关保德, 耿午辰, 戎治权, 等, 1988. 河南东秦岭北坡中-上元古界. 郑州: 河南科学技术出版社, 32-41. [34] 关保德, 潘泽成, 耿午辰, 等, 1980. 东秦岭北坡震旦亚界. 见: 天津地质矿产研究所主编, 中国震旦亚界. 天津: 天津科学技术出版社, 295-297. [35] 陆红锋, 刘坚, 陈芳, 等, 2005. 南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一. 地学前缘, 12 (3): 268-276. doi: 10.3321/j.issn:1005-2321.2005.03.030 [36] 杨志坚, 1958. 豫西下古生界地层及其对比问题. 地质学报, 38 (4): 473-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195804004.htm [37] 周琦, 杜远生, 覃英, 等, 2007a. 贵州省松桃县大塘坡南华纪早期古天然气渗漏构造的发现及其地质意义. 地球科学——中国地质大学学报, 32 (增刊): 33-40. [38] 周琦, 杜远生, 王家生, 等, 2007b. 黔东北地区南华系大塘坡组冷泉碳酸盐岩及其意义. 地球科学——中国地质大学学报, 32 (3): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703005.htm [39] 周琦, 杜远生, 颜佳新, 等, 2007c. 贵州松桃大塘坡地区南华纪早期冷泉碳酸盐岩地质地球化学特征. 地球科学——中国地质大学学报, 32 (6): 845-852. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706016.htm [40] Леин, А. Ю., 2006. 产自黑海和挪威海的冷甲烷渗透流. 朱佛宏译. 海洋地质动态, 22 (9): 25-26, 36.