Petrologic and REE Geochemical Characters of Burnt Rocks
-
摘要: 烧变岩的研究有益于对煤层形成以来所经历的构造运动、古气候和古地理的探讨.为了获得有关烧变岩基本特征的数据资料, 本文利用扫描电镜、能谱测试、古地磁及ICP-MS等测试手段对陕北神木地区烧变岩进行了系统的岩石学及稀土元素地球化学的分析研究.剖面上将烧变岩分成烧熔岩和烧烤岩两个序列.扫描电镜观察及能谱测试显示, 各矿物均显示烧熔迹象, 除伊利石外未发现其他类型粘土矿物; 磁化率测试显示烧变岩具异常高的磁化率; 地球化学分析显示烧变岩稀土元素配分特征近于沉积岩(原岩) 特征; 纵向剖面上, 随烧变程度增大(由烧烤岩至烧熔岩) 其稀土元素总量逐渐减小, 烧熔岩稀土元素总含量较烧烤岩的要明显低; 另外, 烧熔岩表现为较明显的Ce负异常, 而烧烤岩则表现为无Ce异常, 有些甚至表现为偏正异常.Abstract: The study of burnt rocks faciliates the discussion on the tectonic movement, paleoclimate and paleogeography that coal seams were subject to after they were formed.In order to obtain the basic data on the features of the burnt rocks, a systematic study of petrology and REE geochemistry on burnt rocks in Shenmu, North Shaanxi Province, has been done, using the methods of SEM, EDS, susceptibility measurements and ICP-MS.The burnt rocks are divided into two series in the section: the melted rocks and the baked rocks.SEM and EDS analyses reveal that all the minerals show burnt and melted traces, and there are no clay minerals except illite found in the burnt rocks.Susceptibility measurements reveal that the burnt rocks have abnormally high susceptibility values, whereas a geochemical analysis shows that the REE distribution pattern of burnt rocks is similar to that of sedimentary rocks (initial rocks).In the longitudinal section, the REE gradually decreases as the burning degree increases (from baked rocks to melted rocks), and the total REE of melted rocks is obviously lower than that of baked rocks.Besides, the melted rocks show apparent negative Ce anomalies, while the baked rocks show no anomaly of Ce, and sometimes even show positive anomalies.
-
Key words:
- burnt rock /
- mineral petrology /
- susceptibility /
- REE /
- negative Ce anomaly
-
表 1 研究中所选样品统计
Table 1. Samples used in this study
表 2 烧变岩样品中稀土组成(10-6)
Table 2. The REE compositions of burnt rocks
-
[1] Abanda, P. A., Hannigan, R. E., 2006. Effect of diagenesison trace element partitioning in shales. Chem. Geol. , 230: 42-59. doi: 10.1016/j.chemgeo.2005.11.011 [2] Bentor, Y. K., Kastner, M., Perl man, I., et al., 1981. Com-bustion metamorphism of bituminous sediments and the formation of melts of granitic and sedimentary composition. Geochim. Cosmochim. Acta, 45: 2229-2255. doi: 10.1016/0016-7037(81)90074-0 [3] Bureau of Geology and Mineral Resources of Shannxi Province, 1989. Regional geology of Shaanxi Province. Geological Pub. House, Beijing, 1-610 (in Chinese). [4] Chen, D. Q., Chen, G., 1990. The practical rare-earth element geochemistry. Metallurgical Industry Press, Beijing (in Chinese). [5] Cosca, M. A., Essene, E. J., Geissman, J. W., et al., 1989. Pyrometamorphic rocks associated with naturally burned coal beds, Powder River basin, Wyoming. Am. Mineral. , 74: 85-100. [6] De Boer, C. B., Dekkers, M. J., Van Hoof, T. A. M., 2001. Rock-magnetic properties of TRM carrying baked andmolten rocks straddling burnt coal seams. Physics of the Earth and Planetary Interiors, 126: 93-108. doi: 10.1016/S0031-9201(01)00246-1 [7] Elderfield, H., Greaves, M. J., 1982. The rare earth elements in seawater. Nature, 296: 214-219. doi: 10.1038/296214a0 [8] Ellyett, C. D., Fleming, A. W., 1974. Thermal infrared imagery of the burning mountain coal fire. Remote Sens. Environ. , 3 (1): 79-86. doi: 10.1016/0034-4257(74)90040-6 [9] Gromet, L. P., Dymek, R. F., Haskin, L. A., et al., 1984. The "North American shale composite" : Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48: 2469-2482. doi: 10.1016/0016-7037(84)90298-9 [10] Guan, H. Y., Van Ganderen, J. L., Tan, Y. J., et al., 1997. The environment investigation and study of coal bedself-combustionin northern China. Coal Industry Press, Beijing, 54 (in Chinese). [11] Heffern, E. L., Coates, D. A., 2004. Geologic history of natural coal-bed fires, Powder River basin, USA. International Journal of Coal Geology, 59 (1-2): 25-47. doi: 10.1016/j.coal.2003.07.002 [12] Krsová, M., Krs, M., Pruner, P., et al., 1989. Palaeointensity of the geomagnetic field during Upper Cainozoic derived from palaeo-slags and porcellanites in North Bohemia. Stud. Geophys. Geod. , 33: 338-361. doi: 10.1007/BF01637689 [13] Li, S. Z., 1988. The methods and application of rock and mineral magnetism study. Metallurgical Industry Press, Beijing (in Chinese). [14] Lindqvist, J. K., Hatherton, T., Mumme, T. C., 1985. Mag-netic anomalies resulting from baked sediments overburnt coal seams in southern New Zealand. N. Z. J. Ge-ol. Geophys. , 28: 405-412. doi: 10.1080/00288306.1985.10421195 [15] Liu, C. Y., Zhao, H. G., Gui, X. J., et al., 2006. Space-time co-ordinate of the evolution and reformation and mineralization response in Ordos basin. Acta Geologica Sinica, 80 (5): 617-638 (in Chinese with English abstract). [16] Liu, Z. J., 1959. Discussion of the characteristics and genesis of burnt rock and the burnt regularity of underground fire. Geological Review, 19 (5): 209-211 (in Chinese). [17] McLennan, S. M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200. [18] Niu, J. G., 2001. Hydrogeological characteristics of burnt rock in Huojitu Mine, Shenfu mining area. Coal Geology & Exploration, 29 (1): 37-39 (in Chinese with English abstract). [19] Nolter, M. A., Vice, D. H., 2004. Looking back at the Centralia coal fire: Asynopsis of its present status. Int. J. Coal Geol. , 59 (1-2): 99-106. doi: 10.1016/j.coal.2003.12.008 [20] Novikov, I. S., Sokol, E. V., 2007. Combustion metamorphic events as age markers of orogenic movements in Central Asia. Acta Petrologica Sinica, 23 (7): 1561-1572. [21] Pan, Y. X., Lin, M., Hao, J. Q., 1999. Rock-magnetic properties related to thermal mineral alterations in siderite samples. Chinese Journal of Geophysics, 42 (6): 756-763 (in Chinese with English abstract). [22] Prakash, A., Gupta, R. P., Saraf, A. K., 1997. A Landsat TM based comparative study of surface and subsurface fires in the Jharia coalfield, India. Int. J. Remote Sens. , 18: 2463-2469. doi: 10.1080/014311697217738 [23] Rǎdan, S. C., Rǎdan, M., 1998. Rock magnetism and paleo-magnetism of porcelanites/clinkers from the western Dacic basin (Romania). Geol. Carpat. , 49: 209-211. [24] Shang, G. L., Jiang, X, M., Liu, D. M., 1990. The self-com-bustion element of Jurassic coal bed and its burnt characteristics in northern Shenmu. Coal Geology of China, 2 (1): 25-29 (in Chinese). [25] Sholkovitz, E. R., 1990. Rare-earth elements in marine sediments and geochemical standards. Chem. Geol. , 88 (3-4): 333-347. doi: 10.1016/0009-2541(90)90097-Q [26] Sokol, E., Volkova, N., Lepezin, G., 1998. Mineralogy of pyrometamorphic rocks associated with naturally burnedcoal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia. Eur. J. Mineral. , 10: 1003-1014. doi: 10.1127/ejm/10/5/1003 [27] Sun, J. Q., Ma, R. S., Shu, L. S., 2001. Petrologic characteristics of burnt rocks from coalfield self combustion at Urumqi, Xinjiang. Journal of Nanjing Architectural and Civil Engineering Institute, (4): 15-19 (in Chi-nese with English abstract). [28] Taylor, S. R., McLennan, S. M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford. [29] Tyráek, J., 1994. Stratigraphical interpretation of the paleo-magnetic measurements in the porcellanites of the Mostbasin, Czech Republic. Vestnik Ceského Geologickéhoústavu., 69 (2): 83-87. [30] Wang, Y. S., 1986. Burnt rocks and its characteristics. Science and Technology of Xinjiang Geology, (2): 30-31 (in Chinese). [31] Whitehouse, A. E., Mulyana, A. A. S., 2004. Coal fires in Indonesia. International Journal of Coal Geology, 59: 91-97. doi: 10.1016/j.coal.2003.08.010 [32] Xu, H. J., Jin, Z. M., Ou, X. G., 2006. Lithology determination of rocks from CCSD 100-2000m main hole bymagnetic susceptibility and density using discriminant function analysis. Earth Science—Journal of China University of Geosciences, 31 (4): 513-519 (in Chinese with English abstract). [33] Zhou, G. Q., 1995. Thermal modelling research of clay minerals. Experimental Petroleum Geology, 17 (3): 286-292 (in Chinese with English abstract). [34] Zhou, L., Gao, S., Liu, Y. S., et al., 2007. Geochemistry andimplications of clastic sedimentary rocks from thenorthern margin of Yangtze craton. Earth Science—Journal of China University of Geosciences, 32 (1): 29-38 (in Chinese with English abstract). [35] 陈德潜, 陈刚, 1990. 实用稀土元素地球化学. 北京: 冶金工业出版社. [36] 管海晏, 冯. 亨特伦, 谭永杰, 等, 1997. 中国北方煤田自燃环境调查与研究. 北京: 煤炭工业出版社, 54. [37] 李色篆, 1988. 岩矿石磁性研究方法及其应用. 北京: 冶金工业出版社. [38] 刘池洋, 赵红格, 桂小军, 等, 2006. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿) 响应. 地质学报, 80 (5): 617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001 [39] 刘志坚, 1959. 论烧变岩的特征、成因及地下火燃烧的规律性. 地质论评, 19 (5): 209-211. doi: 10.3321/j.issn:0371-5736.1959.05.005 [40] 牛建国, 2001. 神府矿区活鸡兔矿井烧变岩水文地质特征. 煤田地质与勘探, 29 (1): 37-39. doi: 10.3969/j.issn.1001-1986.2001.01.012 [41] 潘永信, 林缅, 郝锦绮, 1999. 菱铁矿热转变过程中岩石磁学性质基本特征. 地球物理学报, 42 (6): 756-763. doi: 10.3321/j.issn:0001-5733.1999.06.005 [42] 陕西省地质矿产局, 1989. 陕西省区域地质志. 北京: 地质出版社, 1-610. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198903002.htm [43] 尚桂林, 蒋新民, 刘大民, 1990. 神木北部侏罗纪煤层自燃因素及其烧变特征. 中国煤田地质, 2 (1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199001005.htm [44] 孙家齐, 马瑞士, 舒良树, 2001. 新疆乌鲁木齐煤田自燃烧变岩岩石特征. 南京建筑工程学院学报, (4): 15-19. [45] 王玉山, 1986. 烧变岩及其特征. 新疆地质科技, (2): 30-31. [46] 徐海军, 金振民, 欧新功, 2006. 磁化率和密度对中国大陆科学钻探主孔100-2000m岩石类型的判别. 地球科学——中国地质大学学报, 31 (4): 513-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604007.htm [47] 周国清, 1995. 粘土矿物的热模拟研究. 石油实验地质, 17 (3): 286-292. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199503010.htm [48] 周炼, 高山, 刘勇胜, 等, 2007. 扬子克拉通北缘碎屑沉积岩地球化学特征及意义. 地球科学——中国地质大学学报, 32 (1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701003.htm